The local variation in the heat transfer coefficient for an axisymmetric, turbulent, submerged liquid jet impinging on a nonuniform boundary of a phase-change material is measured with an ultrasonic measurement technique. The time required for an acoustic wave to traverse the phase-change material is measured with an ultrasonic transducer and the time data are converted into local thickness profiles of the phase-change material via knowledge of the longitudinal acoustic velocity in the material. An energy balance at the melt interface between the impinging jet and the phase-change material is used in conjunction with the local thickness profile data to determine the local variation in the heat transfer coefficient. The phase-change material is originally flat, but its shape changes with time as the heated jet melts a complex shape into its surface. The heat transfer rate over the surface of the melting interface is shown to vary with time as a result of the changing shape of the phase change material. A deep cavity is melted into the solid at the stagnation point and secondary cavities are melted into the interface for certain jet flow rates and surface spacings between the jet nozzle and the melt interface. When secondary cavities are produced, secondary peaks in the local heat transfer coefficient are observed. The heat transfer data are formulated into two Nusselt number correlations that are functions of the dimensionless time, dimensionless radius, dimensionless jet-to-surface spacing, and jet Reynolds number. One correlation is formulated for all locations along the surface of the phase-change material except the stagnation point, and a second correlation is valid at the stagnation point.
This article describes a new ultrasonic measurement technique that evaluates local convective heat transfer coefficients on a curved, melting layer of ice based on measured time-of-flight data. A 2.25 MHz dual element transducer was used to measure the time-dependent thickness of a nonuniform layer of ice that was rapidly melting. The instantaneous thickness data were used to determine the velocity and slope of the ice/water interface and this information was converted into local, instantaneous heat transfer rates at the melt surface. The application of an ultrasonic technique to the measurement of heat transfer rates is unique because it is the first time that thickness measurements on a curved surface that is continually varying in shape have been used to determine local convective heat transfer coefficients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.