INTRODUCTION:Mobile phones have become indispensable in the daily lives of men and women around the globe. As cell phone use has become more widespread, concerns have mounted regarding the potentially harmful effects of RF-EMR from these devices.OBJECTIVE:The present study was designed to evaluate the effects of RF-EMR from mobile phones on free radical metabolism and sperm quality.MATERIALS AND METHODS:Male albino Wistar rats (10–12 weeks old) were exposed to RF-EMR from an active GSM (0.9/1.8 GHz) mobile phone for 1 hour continuously per day for 28 days. Controls were exposed to a mobile phone without a battery for the same period. The phone was kept in a cage with a wooden bottom in order to address concerns that the effects of exposure to the phone could be due to heat emitted by the phone rather than to RF-EMR alone. Animals were sacrificed 24 hours after the last exposure and tissues of interest were harvested.RESULTS:One hour of exposure to the phone did not significantly change facial temperature in either group of rats. No significant difference was observed in total sperm count between controls and RF-EMR exposed groups. However, rats exposed to RF-EMR exhibited a significantly reduced percentage of motile sperm. Moreover, RF-EMR exposure resulted in a significant increase in lipid peroxidation and low GSH content in the testis and epididymis.CONCLUSION:Given the results of the present study, we speculate that RF-EMR from mobile phones negatively affects semen quality and may impair male fertility.
Caulerpa racemosa (Forsskal) J. Agardh is a green seaweed used as food and folk medicine since ancient times in the Indo-Pacific region, particularly in southeast Asia. In this study, the proximate nutrient composition, phytochemical, anti-oxidant and anti-diabetic properties of sea grape C. racemosa collected from culture fishponds in Johor, Malaysia were analysed. The contents (dry weight basis) of carbohydrate, crude protein, crude lipids, ash and caloric value obtained were 33.42 ± 1.34%, 20.27 ± 0.14%, 4.20 ± 0.32%, 28.25 ± 0.27% and 2544.67 ± 7.04 cal g−1, respectively. The amino acid score (AAs) and biological protein value (213.43 mg g−1) indicated that C. racemosa presented a better protein quality. The most abundant fatty acids were C16:0 (palmitic acid: 63.27%), followed by C18:1 (oleic acid: 5.80%), and C18:2 ῳ6 (linoleic acid: 5.33%). The analysis of the ash content indicated that essential minerals and trace elements, such as Ca, Fe, and Mn, were present in the seaweed. The total phenolic content (TPC) and total flavonoid content (TFC) observed in the ethyl acetate extract were 17.88 ± 0.78 mg GAE g−1 and 59.43 ± 2.45 mg QE g−1, respectively. The ethyl acetate extract of C. racemosa demonstrated notable anti-diabetic activity in diabetic induced rats. The low (100 mg kg−1) and high (200 mg kg−1) doses of cultivated C. racemosa extract exhibited a significant decrease (p < 0.05) in blood glucose levels while preventing weight loss, reducing plasma AST, ALT levels as a sign of hepatoprotective effect and recording albumin levels similar to positive control in diabetic induced rats. The results support the usefulness of cultivated C. racemosa as a potential functional food.
: Many plant-based bioactive compounds have been serving as the origin of drugs since long ago and many of them have been proven to have medicinal value against various chronic diseases, including, cancer, arthritis, hepatic diseases, type 2 diabetes and cardiovascular diseases. However, their clinical applications have been limited due to their poor water solubility, stability, low bioavailability and extensive transformation due to first-pass metabolism. The applications of nanocarriers have been proven to be able to improve the delivery of bioactive phytoconstituents, resulting in the enhancement of various pharmacokinetic properties and thereby, increase the therapeutic value of phytoconstituents. These biocompatible nanocarriers also exert low toxicity to healthy cells. This review focuses on the uses and applications of different types of nanocarriers to enhance the delivery of phytoconstituents for the treatment of various chronic diseases, along with comparisons related to bioavailability and therapeutic efficacy of nano phytoconstituents with native phytoconstituents.
Gene therapy through intracellular delivery of a functional gene or a gene-silencing element is a promising approach to properly treat critical human diseases like cancer. The ability of synthetically designed small interfering RNA (siRNA) to effectively silence genes at post-transcriptional level has made them attractive options in targeted therapeutics. However, naked siRNA being unable to passively diffuse through cellular membranes, poses difficulty in fully exploiting the potential of the technology. pH-sensitive carbonate apatite has been developed as an efficient tool to deliver siRNA into the mammalian cells by virtue of its high affinity interaction with the siRNA and effective cellular endocytosis. Moreover, internalized siRNA has been found to escape from the endosomes in a time-dependent manner and effectively silenced reporter gene expression. Knockdown of cyclin B1 gene with only 10 nM of siRNA delivered by carbonate apatite has resulted in significant death of cervical cancer cells. Moreover, delivery of siRNA against cyclin B1 gene has led to the sensitization of the cancer cells to both cisplatin and doxorubicin at a particulat drug concentration. Thus, the new method of siRNA delivery is highly promising for pre-clinical and clinical cancer therapy using siRNA therapeutics.
Cancer is one of the greatest threats posed to society, necessitating appropriate diagnosis methods. Modern targeted therapies have greatly advanced the treatment of several solid tumors. The rational use of these agents requires optimal strategies for the rapid and accurate detection of targetable genomic alterations at the time of initial diagnosis and when acquired resistance to targeted therapies develops. Currently used techniques, such as tissue genotyping, have limitations such as difficulty in categorizing tumors, needing frequent sampling, and difficulty in obtaining samples. To overcome these issues, cost-effective and non-invasive methods are an urgent requisite, which would provide an insight into the realtime dynamics of cancers via circulating biomarkers. Circulating tumor DNA (ctDNA), commonly termed "liquid biopsy," has emerged as a new, promising non-invasive tool to detect biomarkers in several cancers. The present review aimed to understand the biological concept of ctDNA and its potential as a biomarker in cancer studies and the clinical utility of this evolutionary diagnostic technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.