Green corrosion inhibitors are of great interest due to their exciting and environmentally friendly behavior in mild steel corrosion control during and after the acid cleaning process. Herein, alkaloids were extracted from the stem of Ageratina adenophora and were ensured by qualitative chemical tests as well as spectroscopic test methods. The corrosion inhibition efficacy of the alkaloids against mild steel corrosion was evaluated by gravimetric, electrochemical and EIS measurement methods. In addition, the adsorption isotherm, free energy of adsorption and thermodynamic parameters of the process were evaluated. The investigations indicated the most promising inhibition efficacy of the alkaloids for mild steel corrosion. The adsorption isotherm study revealed that the adsorption of inhibitor molecules on the MS interface was manifested by dominant physisorption followed by chemisorption. Free energy and thermodynamic parameters are well suited to endothermic processes.
The residual ions of the acid cleaning processes induce the further corrosion of the metals, and this could be minimized using green inhibitors. Alkaloids extracted from plant parts could be cost effective and efficient inhibitors. In this work, alkaloids from Solanum xanthocarpum stem were successfully extracted, and they were characterized by qualitative chemical tests and spectroscopic measurements. As-extracted alkaloids were employed as green corrosion inhibitors for mild steel. The effectiveness of the inhibitor was determined by the weight loss and electrochemical measurement methods. From the weight loss measurement, the maximum inhibition efficiency of 93.14% was achieved. The temperature effect study revealed that the inhibitor can work up to a temperature of 58 °C. This could be one of the highest working temperatures among the reported green inhibitors. The electrochemical measurement reveals that the alkaloids could inhibit effectively up to 98.14% of the corrosion and serve as a mixed-type green inhibitor. A study on the kinetic parameters reflects that the inhibitor forms a potential barrier for the protection of a mild steel surface against corrosion. The values obtained from the thermodynamic parameters study reflect that the process is a spontaneous endothermic process. Based on the findings, it is revealed that the alkaloids extracted from S. xanthocarpum can serve as an excellent, eco-friendly and a promising green inhibitor against mild steel corrosion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.