Though mild cognitive impairment is an intermediate clinical state between healthy aging and Alzheimer's disease (AD), there are very few whole-brain voxel-wise diffusion MRI studies directly comparing changes in healthy control, mild cognitive impairment (MCI) and AD subjects. Here we report whole-brain findings from a comprehensive study of diffusion tensor indices and probabilistic tractography obtained in a very large population of healthy controls, MCI and probable AD subjects. As expected from the literature, all diffusion indices converged to show that the cingulum bundle, the uncinate fasciculus, the entire corpus callosum and the superior longitudinal fasciculus are the most affected white matter tracts in AD. Significant differences between MCI and AD were essentially confined to the corpus callosum. More importantly, we introduce for the first time in a degenerative disorder an application of a recently developed tensor index, the "mode" of anisotropy, as well as probabilistic crossing-fibre tractography. The mode of anisotropy specifies the type of anisotropy as a continuous measure reflecting differences in shape of the diffusion tensor ranging from planar (e.g., in regions of crossing fibres from two fibre populations of similar density or regions of "kissing" fibres) to linear (e.g., in regions where one fibre population orientation predominates), while probabilistic crossing-fibre tractography allows to accurately trace pathways from a crossing-fibre region. Remarkably, when looking for whole-brain diffusion differences between MCI patients and healthy subjects, the only region with significant abnormalities was a region of crossing fibres in the centrum semiovale, showing an increased mode of anisotropy. The only white matter region demonstrating a significant difference in correlations between neuropsychological scores and a diffusion measure (mode of anisotropy) across the three groups was the same region of crossing fibres. Further examination using probabilistic tractography established explicitly and quantitatively that this previously unreported increase of mode and co-localised increase of fractional anisotropy was explained by a relative preservation of motor-related projection fibres (at this early stage of the disease) crossing the association fibres of the superior longitudinal fasciculus. These findings emphasise the benefit of looking at the more complex regions in which spared and affected pathways are crossing to detect very early alterations of the white matter that could not be detected in regions consisting of one fibre population only. Finally, the methods used in this study may have general applicability for other degenerative disorders and, beyond the clinical sphere, they could contribute to a better quantification and understanding of subtle effects generated by normal processes such as visuospatial attention or motor learning.
Diffusion imaging is a promising marker of microstructural damage in neurodegenerative disorders, but interpretation of its relationship with underlying neuropathology can be complex. Here, we examined both volumetric and brain microstructure abnormalities in 13 amnestic patients with mild cognitive impairment (MCI), who progressed to probable Alzheimer's disease (AD) no earlier than 2 years after baseline scanning, in order to focus on early, and hence more sensitive, imaging markers. We compared them to 22 stable amnestic MCI patients with similar cognitive performance and episodic memory impairment but who did not show progression of symptoms for at least 3 years. Significant group differences were mainly found in the volume and microstructure of the left hippocampus, while white matter group differences were also found in the body of the fornix, left fimbria, and superior longitudinal fasciculus (SLF). Diffusion index abnormalities in the SLF were the sign of a subtle microstructural injury not detected by standard atrophy measures in the corresponding gray matter regions. The microstructural measure obtained in the left hippocampus using diffusion imaging showed the most substantial differences between the two groups and was the best single predictor of future progression to AD. An optimal prediction model (91% accuracy, 85% sensitivity, 96% specificity) was obtained by combining MRI measures and CSF protein biomarkers. These results highlight the benefit of using the information of brain microstructural damage, in addition to traditional gray matter volume, to detect early, subtle abnormalities in MCI prior to clinical progression to probable AD and, in combination with CSF markers, to accurately predict such progression.
When training predictive models from neuroimaging data, we typically have available non-imaging variables such as age and gender that affect the imaging data but which we may be uninterested in from a clinical perspective. Such variables are commonly referred to as ‘confounds’. In this work, we firstly give a working definition for confound in the context of training predictive models from samples of neuroimaging data. We define a confound as a variable which affects the imaging data and has an association with the target variable in the sample that differs from that in the population-of-interest, i.e., the population over which we intend to apply the estimated predictive model. The focus of this paper is the scenario in which the confound and target variable are independent in the population-of-interest, but the training sample is biased due to a sample association between the target and confound. We then discuss standard approaches for dealing with confounds in predictive modelling such as image adjustment and including the confound as a predictor, before deriving and motivating an Instance Weighting scheme that attempts to account for confounds by focusing model training so that it is optimal for the population-of-interest. We evaluate the standard approaches and Instance Weighting in two regression problems with neuroimaging data in which we train models in the presence of confounding, and predict samples that are representative of the population-of-interest. For comparison, these models are also evaluated when there is no confounding present. In the first experiment we predict the MMSE score using structural MRI from the ADNI database with gender as the confound, while in the second we predict age using structural MRI from the IXI database with acquisition site as the confound. Considered over both datasets we find that none of the methods for dealing with confounding gives more accurate predictions than a baseline model which ignores confounding, although including the confound as a predictor gives models that are less accurate than the baseline model. We do find, however, that different methods appear to focus their predictions on specific subsets of the population-of-interest, and that predictive accuracy is greater when there is no confounding present. We conclude with a discussion comparing the advantages and disadvantages of each approach, and the implications of our evaluation for building predictive models that can be used in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.