Most of the traditional work on intrinsic image decomposition rely on deriving priors about scene characteristics. On the other hand, recent research use deep learning models as in-and-out black box and do not consider the wellestablished, traditional image formation process as the basis of their intrinsic learning process. As a consequence, although current deep learning approaches show superior performance when considering quantitative benchmark results, traditional approaches are still dominant in achieving high qualitative results.In this paper, the aim is to exploit the best of the two worlds. A method is proposed that (1) is empowered by deep learning capabilities, (2) considers a physics-based reflection model to steer the learning process, and (3) exploits the traditional approach to obtain intrinsic images by exploiting reflectance and shading gradient information. The proposed model is fast to compute and allows for the integration of all intrinsic components. To train the new model, an object centered large-scale datasets with intrinsic ground-truth images are created.The evaluation results demonstrate that the new model outperforms existing methods. Visual inspection shows that the image formation loss function augments color reproduction and the use of gradient information produces sharper edges.Datasets, models and higher resolution images are available at https://ivi.fnwi.uva.nl/cv/retinet.
Semantic segmentation of outdoor scenes is problematic when there are variations in imaging conditions. It is known that albedo (reflectance) is invariant to all kinds of illumination effects. Thus, using reflectance images for semantic segmentation task can be favorable. Additionally, not only segmentation may benefit from reflectance, but also segmentation may be useful for reflectance computation. Therefore, in this paper, the tasks of semantic segmentation and intrinsic image decomposition are considered as a combined process by exploring their mutual relationship in a joint fashion. To that end, we propose a supervised end-to-end CNN architecture to jointly learn intrinsic image decomposition and semantic segmentation. We analyze the gains of addressing those two problems jointly. Moreover, new cascade CNN architectures for intrinsic-for-segmentation and segmentation-for-intrinsic are proposed as single tasks. Furthermore, a dataset of 35K synthetic images of natural environments is created with corresponding albedo and shading (intrinsics), as well as semantic labels (segmentation) assigned to each object/scene. The experiments show that joint learning of intrinsic image decomposition and semantic segmentation is beneficial for both tasks for natural scenes. Dataset and models are available at: https://ivi.fnwi.uva.nl/cv/intrinseg.
Instance segmentation methods require large datasets with expensive and thus limited instance-level mask labels. Partially supervised instance segmentation aims to improve mask prediction with limited mask labels by utilizing the more abundant weak box labels. In this work, we show that a class agnostic mask head, commonly used in partially supervised instance segmentation, has difficulties learning a general concept of foreground for the weakly annotated classes using box supervision only. To resolve this problem, we introduce an object mask prior (OMP) that provides the mask head with the general concept of foreground implicitly learned by the box classification head under the supervision of all classes. This helps the class agnostic mask head to focus on the primary object in a region of interest (RoI) and improves generalization to the weakly annotated classes. We test our approach on the COCO dataset using different splits of strongly and weakly supervised classes. Our approach significantly improves over the Mask R-CNN baseline and obtains competitive performance with the state-ofthe-art, while offering a much simpler architecture. 1 * This paper is the product of work during an internship at TomTom.
In this paper, we formulate the color constancy task as an image-to-image translation problem using GANs. By conducting a large set of experiments on different datasets, an experimental survey is provided on the use of different types of GANs to solve for color constancy i.e. CC-GANs (Color Constancy GANs). Based on the experimental review, recommendations are given for the design of CC-GAN architectures based on different criteria, circumstances and datasets.
You will be contacted as soon as possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.