Industrial Internet of Things (IIoT) is a rapidly growing field, where interconnected devices and systems are used to improve operational efficiency and productivity. However, the extensive connectivity and data exchange in the IIoT environment make it vulnerable to cyberattacks. Intrusion detection systems (IDS) are used to monitor IIoT networks and identify potential security breaches. Feature selection is an essential step in the IDS process, as it can reduce computational complexity and improve the accuracy of the system. In this research paper, we propose a hybrid feature selection approach for intrusion detection in the IIoT environment using Shapley values and a genetic algorithm-based automated preprocessing technique which has three automated steps including imputation, scaling and feature selection. Shapley values are used to evaluate the importance of features, while the genetic algorithm-based automated preprocessing technique optimizes feature selection. We evaluate the proposed approach on a publicly available dataset and compare its performance with existing state-of-the-art methods. The experimental results demonstrate that the proposed approach outperforms existing methods, achieving high accuracy, precision, recall, and F1-score. The proposed approach has the potential to enhance the performance of IDS in the IIoT environment and improve the overall security of critical industrial systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.