Although states take various measures to prevent air pollution, air pollutants continue to exist as an important problem in the world. One air pollutant that seriously affects human health is called PM2.5 (particles smaller than 2.5 micrometers in diameter). These particles pose a serious threat to human health. For example, it can penetrate deep into the lung, irritate and erode the alveolar wall and consequently impair lung function. From this, the event PM2.5 prediction is very important. In this study, PM2.5 prediction was made using 12 models, namely, Decision Tree (DT), Extra Tree (ET), k-Nearest Neighbourhood (k-NN), Linear Regression (LR), Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM) models. The LSTM model developed according to the results obtained achieved the best result in terms of MSE, RMSE, MAE, and R2 metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.