A short account of the developments and perspectives of IKR (iso-kinetic relation) and EEC (enthalpy (H) - entropy (S) compensation) has been presented. The IKR and EEC are known to be extra thermodynamic or empirical correlations though linear H-S correlation can be thermodynamically deduced. Attempt has also been made to explain the phenomena in terms of statistical thermodynamics. In this study, we have briefly revisited the fundamentals of both IKR and EEC from kinetic and thermodynamic grounds. A detailed revisit of the EEC phenomenon on varied kinetic and equilibrium processes has been also presented. Possible correlations among the free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) changes of different similar and nonsimilar chemical processes under varied conditions have been discussed with possible future projections.
Individual amphiphiles, polymers, and colloidal dispersions influenced by temperature, pH, and environmental conditions or interactions between their oppositely charged pairs in solvent medium often produce solvent-rich and solvent-poor phases in the system. The solvent-poor denser phase found either on the top or the bottom of the system is called coacervate. Coacervates have immense applications in various technological fields. This review comprises a concise introduction, focusing on the types of coacervates, and the influence of different factors in their formation, structures, and stability. In addition, their physicochemical properties, thermodynamics of formation, and uses and multifarious applications are also concisely presented and discussed.
Mixed aquo-organic solvents are used in chemical, industrial, and pharmaceutical processes along with amphiphilic materials. Their fundamental studies with reference to bulk and interfacial phenomena are thus considered to be important, but such detailed studies are limited. In this work, the interfacial adsorption of sodium dodecylsulfate (SDS, C12H25SO4(-)Na(+)) in dioxane-water (Dn-W) and methanol-water (Ml-W) media in extensive mixing ratios along with its bulk behavior have been investigated. The solvent-composition-dependent properties have been identified, and their quantifications have been attempted. The SDS micellization has been assessed in terms of different solvent parameters, and the possible formation of an ion pair and triple ion of the colloidal electrolyte, C12H25SO4(-)Na(+) in the Dn-W medium has been correlated and quantified. In the Ml-W medium at a high volume percent of Ml, the SDS amphiphile formed special associated species instead of ion association. The formation of self-assembly and the energetics of SDS in the mixed solvent media have been determined and assessed using conductometry, calorimetry, tensiometry, viscometry, NMR, and DLS methods. The detailed study undertaken herein with respect to the behavior of SDS in the mixed aquo-organic solvent media (Dn-W and Ml-W) is a new kind of endeavor.
In this contribution, we have examined a composition dependent self aggregated structural modification of a catanionic mixture of the surface active ionic liquid (IL) 1-butyl-3-methylimidazolium octyl sulphate and a cationic gemini surfactant (14-5-14) in aqueous medium. We have observed that the hydrodynamic diameter of the aggregates increases with increasing IL concentration and microscopic evidence (HRTEM, FESEM, and LCSM) shows the formation of vesicle like aggregates (Dh ≈ 200 nm) at XIL = 0.5. The steady state fluorescence anisotropy of the membrane binding probe DPH shows a micelle to vesicle transition at this composition. The viscosity of the solution shows a peak at XIL = 0.3, indicating the formation of a worm like micelle as an intermediate of the micelle to vesicle transition. The rotational dynamics shows a stiffer surfactant packing in the vesicles compared to the micelles, whereas, the solvation dynamics measurements indicate a higher abundance of bound type water in the vascular medium compared to that for the micelle. The formed vesicles also show stability towards temperature and biomolecules, which can be used for respective applications.
Self-aggregation of MEGA-9 (N-nonanoyl-N-methyl-D-glucamine), a nonionic sugar-based surfactant, was studied with respect to the effect of salt (NaCl) and ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate) on its critical micelle concentration (cmc), aggregation number, hydrodynamic dimensions, energetics of micellization, and micellar microenvironment. Fluorimetry (both steady state and time resolved) was used to understand the microenvironments under the influence of additives. NaCl was found to decrease cmc, increase aggregation number (N), increase micellar size, and decrease enthalpy of micelle formation; the IL effect on the parameters was mostly opposite. The microscopic properties of micelles were probed using two fluorophores: one nonpolar C-153 (2,3,5,6-1H,4H-tetrahydro-8-trifluormethylquinolizino-(9,9a,1-gh)coumarin) and the other fairly polar ANS (8-anilinonaphthalene-1-sulfonate); they delivered information on the palisade layer and the peripheral region of the micelle interface, respectively. Energy of activation and entropy of activation of the dynamics of the probes were evaluated from their decay time, lifetime, and rotational movements in the regions of residency in the micelles. Density functional theory (DFT) calculations showed that the ternary combination MEGA-9/IL/H2O had the maximum interaction energy compared to any of the binary combinations. Thus, the ionic liquid reduced MEGA-9 self-association to a large extent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.