An efficient fluorescent Al(3+) receptor, N-(2-hydroxy-1-naphthalene)-N'-(2-(2-hydroxy-1-naphthalene)amino-ethyl)-ethane-1,2-diamine (L) has been synthesized by the condensation reaction between 2-hydroxy naphthaldehyde and diethylenetriamine. High selectivity and affinity of L towards Al(3+) in ethanol (EtOH) as well as in HEPES buffer at pH 7.4, makes it suitable to detect intracellular Al(3+) with fluorescence microscopy. Metal ions, viz. Li(+), Na(+), K(+), Mg(2+), Ca(2+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Ag(+), Cd(2+), Hg(2+) and Pb(2+) do not interfere. The lowest detection limit for Al(3+) is 3.0 × 10(-7) M and 1.0 × 10(-7) M in EtOH and HEPES buffer respectively.
Rhodamine-diformyl p-cresol conjugate (L) has been developed as a novel Al(3+)-selective fluorometric and colorimetric sensor based on the FRET mechanism for the first time. L can selectively detect Al(3+) through time-dependent PET-CHEF and FRET processes. This phenomenon is nicely reflected from (1)H NMR, fluorescence lifetime, and fluorescence cell imaging studies. The probe can detect Al(3+) as low as 5 × 10(-9) M in HEPES-buffered EtOH:water (0.1 M, 4:1, v/v, pH 7.4). The probe shows pH-dependent emission properties viz. an intense red emission (585 nm) at acidic pH and an intense green fluorescence (535 nm) at basic pH. Thus, L can also be used as a pH sensor via tunable wavelength.
2-((Naphthalen-6-yl)methylthio)ethanol (HL) was prepared by one pot synthesis using 2-mercaptoethanol and 2-bromomethylnaphthalene. It was found to be a highly selective fluorescent sensor for Al(3+) in the physiological pH (pH 7.0-8.0). It could sense Al(3+) bound to cells through fluorescence microscopy. Metal ions like Mn(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Ag(+), Cd(2+), Hg(2+), Cr(3+) and Pb(2+) did not interfere. No interference was also observed with anions like Cl(-), Br(-), F(-), SO(4)(2-), NO(3)(-), CO(3)(2-), HPO(4)(2-) and SCN(-). Experimentally observed structural and spectroscopic features of HL and its Al(3+) complex have been substantiated by computational calculations using density functional theory (DFT) and time dependent density functional theory (TDDFT).
A rhodamine-pyrene hybrid molecule acts as a colorimetric and fluorimetric sensor for Al(3+) through time dependent PET-CHEF and FRET processes associated with tri-color emission. Intracellular Al(3+) has been visualized through time dependent blue-green-red emission. The lowest limit of detection for Al(3+) is 0.02 μM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.