Regulatory T cells have been clearly implicated in the control of disease in murine models of autoimmunity. The paucity of data regarding the role of these lymphocytes in human autoimmune disease has prompted us to examine their function in patients with rheumatoid arthritis (RA). Regulatory (CD4+CD25+) T cells isolated from patients with active RA displayed an anergic phenotype upon stimulation with anti-CD3 and anti-CD28 antibodies, and suppressed the proliferation of effector T cells in vitro. However, they were unable to suppress proinflammatory cytokine secretion from activated T cells and monocytes, or to convey a suppressive phenotype to effector CD4+CD25− T cells. Treatment with antitumor necrosis factor α (TNFα; Infliximab) restored the capacity of regulatory T cells to inhibit cytokine production and to convey a suppressive phenotype to “conventional” T cells. Furthermore, anti-TNFα treatment led to a significant rise in the number of peripheral blood regulatory T cells in RA patients responding to this treatment, which correlated with a reduction in C reactive protein. These data are the first to demonstrate that regulatory T cells are functionally compromised in RA, and indicate that modulation of regulatory T cells by anti-TNFα therapy may be a further mechanism by which this disease is ameliorated.
Direct massively parallel sequencing of SARS-CoV-2 genome was undertaken from nasopharyngeal and oropharyngeal swab samples of infected individuals in Eastern India. Seven of the isolates belonged to the A2a clade, while one belonged to the B4 clade. Specific mutations, characteristic of the A2a clade, were also detected, which included the P323L in RNA-dependent RNA polymerase and D614G in the Spike glycoprotein. Further, our data revealed emergence of novel subclones harbouring nonsynonymous mutations, viz. G1124V in Spike (S) protein, R203K, and G204R in the nucleocapsid (N) protein. The N protein mutations reside in the SR-rich region involved in viral capsid formation and the S protein mutation is in the S 2 domain, which is involved in triggering viral fusion with the host cell membrane. Interesting correlation was observed between these mutations and travel or contact history of COVID-19 positive cases. Consequent alterations of miRNA binding and structure were also predicted for these mutations. More importantly, the possible implications of mutation D614G (in S D domain) and G1124V (in S 2 subunit) on the structural stability of S protein have also been discussed. Results report for the first time a bird's eye view on the accumulation of mutations in SARS-CoV-2 genome in Eastern India.
COVID-19 pandemic is a major human tragedy. Worldwide, SARS-CoV-2 has already infected over 3 million and has killed about 230,000 people. SARS-CoV-2 originated in China and, within three months, has evolved to an additional 10 subtypes. One particular subtype with a non-silent (Aspartate to Glycine) mutation at 614 th position of the Spike protein (D614G) rapidly outcompeted other preexisting subtypes, including the ancestral. We assessed that D614G mutation generates an additional serine protease (Elastase) cleavage site near the S1-S2 junction of the Spike protein. We also identified that a single nucleotide deletion (delC) at a known variant site (rs35074065) in a cis-eQTL of TMPRSS2, is extremely rare in East Asians but is common in Europeans and North Americans. The delC allele facilitates entry of the 614G subtype into host cells, thus accelerating the spread of 614G subtype in Europe and North America where the delC allele is common. The delC allele at the cis-eQTL locus rs35074065 of TMPRSS2 leads to overexpression of both TMPRSS2 and a nearby gene MX1. The cis-eQTL site, rs35074065 overlaps with a transcription factor binding site of an activator (IRF1) and a repressor (IRF2). IRF1 activator can bind to variant delC allele, but IRF2 repressor fails to bind. Thus, in an individual carrying the delC allele, there is only activation, but no repression. On viral entry, IRF1 mediated upregulation of MX1 leads to neutrophil infiltration and processing of 614G mutated Spike protein by neutrophil Elastase. The simultaneous processing of 614G spike protein by TMPRSS2 and Elastase serine proteases facilitates the entry of the 614G subtype into host cells. Thus, SARS-CoV-2, particularly the 614G subtype, has spread more easily and with higher frequency to Europe and North America where the delC allele regulating expression of TMPRSS2 and MX1 host proteins is common, but not to East Asia where this allele is rare.
SARS-CoV-2 was first reported from China. Within three months, it evolved to 10 additional subtypes. Two evolved subtypes (A2 and A2a) carry a non-synonymous Spike protein mutation (D614G). We conducted phylodynamic analysis of over 70,000 SARS-CoV-2 coronaviruses worldwide, sequenced until July2020, and found that the mutant subtype (614G) outcompeted the pre-existing type (614D), significantly faster in Europe and North-America than in East Asia. Bioinformatically and computationally, we identified a novel neutrophil elastase (ELANE) cleavage site introduced in the G-mutant, near the S1-S2 junction of the Spike protein. We hypothesised that elevation of neutrophil elastase level at the site of infection will enhance the activation of Spike protein thus facilitating host cell entry for 614G, but not the 614D, subtype. The level of neutrophil elastase in the lung is modulated by its inhibitor α1-antitrypsin (AAT). AAT prevents lung tissue damage by elastase. However, many individuals exhibit genotype-dependent deficiency of AAT. AAT deficiency eases host-cell entry of the 614G virus, by retarding inhibition of neutrophil elastase and consequently enhancing activation of the Spike protein. AAT deficiency is highly prevalent in European and North-American populations, but much less so in East Asia. Therefore, the 614G subtype is able to infect and spread more easily in populations of the former regions than in the latter region. Our analyses provide a molecular biological and evolutionary model for the higher observed virulence of the 614G subtype, in terms of causing higher morbidity in the host (higher infectivity and higher viral load), than the non-mutant 614D subtype.
Objectives: To identify perioperative risk factors for postoperative systemic inflammatory response syndrome (SIRS) and suggest possible modifications to reduce morbidity. Material and Methods: We prospectively analysed perioperative data such as history of pervious stone surgery, number and configuration of stones, presence of stent or nephrostomy, any previous positive urine culture, intraoperative renal pelvic urine and stone culture, aspiration of turbid urine on initial puncture, number of tracts required and clearance of stones, operative time and intraoperative hypotension and tachycardia of all patients who underwent percutaneous nephrolithotomy over a period of 15 months. Results: A total of 182 patients were included, average stone size was 2.8 cm, 36.2% had staghorn stones and 15.9% had an indwelling stent or nephrostomy. Despite sterile preoperative urine culture, renal pelvic urine culture (RPUC) was positive in 14.8% (27 patients) and stone culture was positive in 21.9% (40 patients). SIRS developed in 17.5% (32 patients) and septic shock in 1.09% (2 patients). On analysis younger age, positive RPUC and stone culture, longer operative time and intraoperative tachycardia correlated significantly with the development of SIRS. Conclusion: Intra-operative cultures are only therapy-guiding cultures during SIRS, as preoperative urine cultures seldom accurately depict bacteriological status of upper tracts and thus should be obtained in all patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.