The size of cities has been continuously increasing because of urbanization. The number of public and private transportation vehicles is rapidly increasing, thus resulting in traffic congestion, traffic accidents, and environmental pollution. Although major cities have undergone considerable development in terms of transportation infrastructure, problems caused by a high number of moving vehicles cannot be completely resolved through the expansion of streets and facilities. This paper proposes a solution for the parking problem in cities that entails a shared parking system. The primary concept of the proposed shared parking system is to release parking lots that are open to specific groups for public usage without overriding personal usage. Open-to-specific-groups parking lots consist of parking spaces provided for particular people, such as parking buildings at universities for teachers, staff, and students. The proposed shared parking system comprises four primary steps: collecting and preprocessing data by using an Internet of Things system, predicting internal demand by using a recurrent neural network algorithm, releasing several unoccupied parking lots based on prediction results, and continuously updating the real-time data to improve future internal usage prediction. Data collection and data forecasting are performed to ensure that the system does not override personal usage. This study applied several forecasting algorithms, including seasonal ARIMA, support vector regression, multilayer perceptron, convolutional neural network, long short-term memory recurrent neural network with a many-to-one structure, and long short-term memory recurrent neural network with a many-to-many structure. The proposed system was evaluated using artificial and real datasets. Results show that the recurrent neural network with the many-to-many structure generates the most accurate prediction. Furthermore, the proposed shared parking system was evaluated for some scenarios in which different numbers of parking spaces were released. Simulation results show that the proposed shared parking system can provide parking spaces for public usage without overriding personal usage. Moreover, this system can generate new income for parking management and/or parking lot owners.
A building, a central location of human activities, is equipped with many devices that consume a lot of electricity. Therefore, predicting the energy consumption of a building is essential because it helps the building management to make better energy management policies. Thus, predicting energy consumption of a building is very important, and this study proposes a forecasting framework for energy consumption of a building. The proposed framework combines a decomposition method with a forecasting algorithm. This study applies two decomposition algorithms, namely the empirical mode decomposition and wavelet transformation. Furthermore, it applies the long short term memory algorithm to predict energy consumption. This study applies the proposed framework to predict the energy consumption of 20 buildings. The buildings are located in different time zones and have different functionalities. The experiment results reveal that the best forecasting algorithm applies the long short term memory algorithm with the empirical mode decomposition. In addition to the proposed framework, this research also provides the recommendation of the forecasting model for each building. The result of this study could enrich the study about the building energy forecasting approach. The proposed framework also can be applied to the real case of electricity consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.