In most primitively eusocial wasps new nests are initiated by a single female or by small groups of females. To study the emergence of division of labor (DOL) among the nest foundresses and to determine its possible effect on nest productivity we maintained newly eclosed females of in small boxes with one, two, or three nestmate wasps of the same age per box. Only one wasp developed her ovaries and laid eggs in each box, while the other wasp(s) built the nest, brought food, and fed larvae, demonstrating the spontaneous emergence of reproductive DOL in the presence of more than one wasp. In nests with three wasps there was also a strong negative correlation between intranidal and extranidal work performed by the two nonreproductive workers, suggesting the spontaneous emergence of nonreproductive DOL; such nonreproductive DOL was absent in nests with two wasps. Both reproductive and nonreproductive DOL were modulated by dominance behavior (DB). In nests with two wasps the egg layer showed significantly more DB than the non-egg layer before nest initiation; in nests with three wasps queens showed significantly more DB than intranidal workers, which in turn showed significantly more DB than extranidal workers. Productivities of nests (as measured by total brood on the day of eclosion of the first adult) initiated by one or two wasps were not different from each other but were significantly lower than that of three wasps. Thus, nonreproductive DOL, and not merely reproductive DOL, is necessary for increase in productivity.
The reduced risk of predation, increased foraging efficiency and resource sharing of group-living contribute to the dominance of social insects in most terrestrial ecosystems. However, because groupliving increases the frequency of interactions among individuals, it should also lead to greater transmission and prevalence of pathogens (Schmid-Hempel, 2017). Higher pathogen load could represent a substantial cost to social living that is rarely considered in models of social evolution. Comparisons between species of birds or mammals suggest that pathogen load increases with group size (Nunn et al., 2015;Schmid-Hempel, 2017). However, the species involved in such comparisons differ substantially in terms of ecological niches and evolutionary histories. It thus remains unclear if increases in group size result in higher pathogen loads. To test this, one should ideally compare the pathogen load in different social contexts within the same species.
Eusocial insects are characterised by a reproductive caste differentiation such that egg-laying is restricted to a small number of queens. The majority of the colony members function as non-reproducing workers and gain indirect fitness by rearing the offspring of the reproductives. In primitively eusocial species, some workers can also get direct fitness by sneaking in some eggs in the presence of the queens, replacing the queens and becoming new queens, or initiating new nests. Here we aimed to understand the factors that permit some workers to gain direct fitness and alter the number of workers doing so, using the primitively eusocial wasp Ropalidia marginata. We transplanted 12 naturally occurring colonies into large laboratory cages where there was adequate space for the workers to leave their natal nests and initiate new colonies. We compared six control colonies that we provided with ad libitum food placed near the nest to six test colonies in which we hand-fed the wasps in addition to the ad libitum food. Wasps in test colonies consumed more food, showed more aggression, replaced their queens, and initiated new nests significantly more often than those in control colonies. When considering all 12 colonies, the rates of queen replacement and nest foundation were significantly positively correlated with food consumption rates. The additional nutrition gained by hand-fed wasps appears to help workers in test colonies to develop their ovaries and lay eggs, implying that they are nutritionally castrated in control colonies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.