Biodiesel is one of the most important types of sustainable alternate bioenergy sources. In developing countries like India, where edible oils are in short supply non-edible plant oils are used as biodiesel feedstocks. In the present work an attempt was made to produce biodiesel from crude neem oil. Due to its high FFA content, neem oil was processed in two steps: acid pretreatment followed by base catalyzed transesterification. The optimum combination for reducing the FFA of crude neem oil to less than 1% after pretreatment was found to be 1.58%v/v H2SO4 acid catalyst, 0.63v/v methanol to oil ratio and 90 min reaction time at a reaction temperature of 60oC as compared to 0.23 v/v methanol to pretreated oil ratio and 23 min reaction time for transesterification. The maximum yield of biodiesel was 90.5%. The properties of produced biodiesel were found quite comparable to diesel and also met the ASTM standards.
In developing countries like India, where edible oils are in short supply, the contribution of non-edible oils like neem as a source for biodiesel production will be of great importance in the coming days. Biodiesel was produced from non-edible neem oil having a free fatty acid content of 19% in a two-step process, as free fatty acid of more than 1% in the feedstock adversely affects the single step alkali catalyzed transesterification process by soap formation. The first step of acid catalysed esterification reduced the free fatty acid content of neem oil to below 1%. The optimum combinations of parameters for pretreatment were found to be 0.60 volume by volume (v/v) methanol-to-oil ratio, 1% v/v H 2 SO 4 acid catalyst and 1 hr reaction time. The next base catalysed transesterification process converted the pretreated oil to neem biodiesel. The optimum combination of parameters for transesterification was found to be 0.24 v/v methanolto-oil ratio, 1.08% weight by volume (w/v) catalyst concentration and 34 min reaction time. This two-step process gave an average yield of 90%. The fuel properties of neem biodiesel were found to be comparable to those of diesel, and conform to the latest American Standards for Testing of Materials Standards.
Post harvest losses of fruits and vegetables in India are approximately 35-40% which is a matter of grave concern for Indian agriculture sector (Krishijagran.com, 2019). India is the second-largest producer of fruits and vegetables, after China. But the post harvest losses that occur during different post-harvest processes till the product reach to the consumer directly affect all the producers, supplier and consumers in the marketing chain. These losses occur mainly due to the lack of proper harvest practices, transportation and cold storage facilities. Several techniques such as refrigeration, controlled atmosphere storage, modified atmosphere storage, chemical preservatives and packaging are being used for post harvest quality retention of different fruits and vegetables (
Our digital and physical lives are increasingly linked to the apps, services, and devices we use to access a rich set of experiences. This digital transformation allows us to interact with hundreds of companies and thousands of other users in ways that were previously unimaginable. The whole concept here is to make a decentralized network of blockchain to provide each person in the world a unique identity based on their biometrics with great privacy and no intervention of a single authority. We have used a distributed blockchain system for this purpose, SHA-256 for hashing, digital certificated for identity verification. This project will give a unique identity and can be trusted by every organisation. It can be integrated with storing digital documents and verification of the credential for any organisational use, of course only with the permission of a individual.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.