Objectives
To assess Prostate Imaging Reporting and Data System (PI-RADS)–trained deep learning (DL) algorithm performance and to investigate the effect of data size and prior knowledge on the detection of clinically significant prostate cancer (csPCa) in biopsy-naïve men with a suspicion of PCa.
Methods
Multi-institution data included 2734 consecutive biopsy-naïve men with elevated PSA levels (≥ 3 ng/mL) that underwent multi-parametric MRI (mpMRI). mpMRI exams were prospectively reported using PI-RADS v2 by expert radiologists. A DL framework was designed and trained on center 1 data (n = 1952) to predict PI-RADS ≥ 4 (n = 1092) lesions from bi-parametric MRI (bpMRI). Experiments included varying the number of cases and the use of automatic zonal segmentation as a DL prior. Independent center 2 cases (n = 296) that included pathology outcome (systematic and MRI targeted biopsy) were used to compute performance for radiologists and DL. The performance of detecting PI-RADS 4–5 and Gleason > 6 lesions was assessed on 782 unseen cases (486 center 1, 296 center 2) using free-response ROC (FROC) and ROC analysis.
Results
The DL sensitivity for detecting PI-RADS ≥ 4 lesions was 87% (193/223, 95% CI: 82–91) at an average of 1 false positive (FP) per patient, and an AUC of 0.88 (95% CI: 0.84–0.91). The DL sensitivity for the detection of Gleason > 6 lesions was 85% (79/93, 95% CI: 77–83) @ 1 FP compared to 91% (85/93, 95% CI: 84–96) @ 0.3 FP for a consensus panel of expert radiologists. Data size and prior zonal knowledge significantly affected performance (4%, $$p<0.05$$
p
<
0.05
).
Conclusion
PI-RADS-trained DL can accurately detect and localize Gleason > 6 lesions. DL could reach expert performance using substantially more than 2000 training cases, and DL zonal segmentation.
Key Points
• AI for prostate MRI analysis depends strongly on data size and prior zonal knowledge.
• AI needs substantially more than 2000 training cases to achieve expert performance.
This is a continuous paper on limitations of commonly used metrics in image analysis. The current version discusses segmentation metrics only, while future versions will also include metrics for classification and detection tasks. For missing references, use cases, other comments or questions, please contact
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.