The penetration of renewable energy sources (RESs) in the distribution system becomes a challenge for the reliable and safe operation of the existing power system. The sporadic characteristics of sustainable energy sources along with the random load variations greatly affect the power quality and stability of the system. Hence, it requires storage systems with both high energy and high power handling capacity to coexist in microgrids. An efficient energy management structure is designed in this paper for a grid-connected PV system combined with hybrid storage of supercapacitor and battery. The combined supercapacitor and battery storage system grips the average and transient power changes, which provides a quick control for the DC-link voltage, i. e., it stabilizes the system and helps achieve the PV power smoothing. The average power distribution between the power grid and battery is done by checking the state of charge (SOC) of a battery, and an effective and efficient energy management scheme is proposed. Additionally, the use of a supercapacitor lessens the current stress on the battery system during unexpected disparity in the generated power and load requirement. The performance and efficacy of the proposed energy management scheme are justified by simulation studies.
The limited availability of fossil fuel and the growing energy demand in the world creates global energy challenges. These challenges have driven the electric power system to adopt the renewable source-based power production system to get green and clean energy. However, the trend of the introduction of renewable power sources increases the uncertainty in the production, control, and operation of power systems due to the erratic nature of the environment. To overcome these meteorological conditions, some support systems, such as storage devices, are integrated with renewable energy sources (RES). A number of storage devices are hybridized to get the hybrid energy storage system (HESS) to get a potential solution for these microgrid problems. For maintaining the robustness and reliability of the power system, proper control, and management of power in the microgrid is very important. In this paper, an analytical study related to power management strategies is given along with different interconnection topologies for the HESS. Analysis and control of storage devices are necessary to avoid the premature degradation of the devices and to get their optimal utilization. Therefore, this article attempts to include different power management schemes used in AC/DC microgrids. Furthermore, various control techniques specific to different energy storage devices are reviewed extensively, which would serve as a complete guide for the design and implementation of a hybrid AC/DC microgrid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.