Microtubules regulate eukaryotic cell functions, which have tremendous implication in tumor progression. Thus, the design of novel approaches for controlling microtubule function is extremely important. In this manuscript, a novel tetrapeptide Ser-Leu-Arg-Pro (SLRP) has been designed and synthesized from a small peptide library consisting of 14 tetrapeptides, which perturbs microtubule function through interaction in the "anchor region". We have studied the role of peptides on microtubule function on a chemically functionalized 2D platform. Interestingly, we have found that SLRP binds with tubulin and inhibits the kinesin-driven microtubule motility on a kinesin-immobilized chemically functionalized 2D platform. Further, this peptide modulator interacts with intracellular tubulin/microtubule and depolymerizes the microtubule networks. These interesting findings of perturbation of microtubule function both on engineered platforms and inside the cell by this small peptide modulator inspired us to study the effect of this tetrapeptide on cancer cell proliferation. We found that the novel tetrapeptide modulator causes moderate cytotoxicity to the human breast cancer cell (MCF-7 cell), induces the apoptotic death of MCF-7 cell, and activates the tumor suppressor proteins p53 and cyclin-dependent kinase inhibitor 1 (p21). To the best of our knowledge, this is the shortest peptide discovered, which perturbs microtubule function both on an engineered 2D platform and inside the cell.
A novel neuro-compatible peptide-based hydrogel has been designed and developed, which contains microtubule stabilizing and neuroprotective short peptide. This hydrogel shows strong three-dimensional cross-linked fibrillary networks, which can capture water molecules. Interestingly, this hydrogel serves as excellent biocompatible soft material for 2D and 3D (neurosphere) neuron cell culture and provides stability of key cytoskeleton filaments such as microtubule and actin. Remarkably, it was observed that this hydrogel slowly enzymatically degrades and releases neuroprotective peptide, which promotes neurite outgrowth of neuron cell as well as exhibits excellent neuroprotection against anti-NGF-induced toxicity in neuron cells. Further, it can encapsulate anti-Alzheimer and anticancer hydrophobic drug curcumin, releases slowly, and inhibits significantly the growth of a 3D spheroid of neuron cancer cells. Thus, this novel neuroprotective hydrogel can be used for both neuronal cell transplantation for repairing brain damage as well as a delivery vehicle for neuroprotective agents, anti-Alzheimer, and anticancer molecules.
A biocompatible hydrogel containing a hexapeptide as a key unit has been designed and fabricated. Our design construct comprises a β-sheet-rich short hexapeptide in the center with a hydrophobic long chain and hydrophilic triple lysine unit attached at the N- and C-terminals, respectively. Thus, it is this amphiphilic nature of the molecule that facilitates gelation. It can capture solvent molecules in the three-dimensional cross-linked fibrillar networks. The amphiphilic character of the construct has been modulated to produce an excellent biocompatible soft material for the inhibition of bacterial growth by rupturing the bacterial cell membrane. This hydrogel is also stable against enzymatic degradation (proteinase K) and, most importantly, offers a biocompatible environment for the growth of normal mammalian cells due to its noncytotoxic nature as observed through the cell viability assay. From the hemolytic assay, the morphology of the human red blood cells is found to be almost intact, which suggests that the hydrogel can be used in biomedical applications. Thus, this newly designed antibacterial hydrogel can be used as both an antibacterial biomaterial and a biocompatible scaffold for mammalian cell culture.
Herein, we report a novel hexapeptide, derived from activity dependent neuroprotective protein (ADNP), that spontaneously self-assembles to form antiparallel β-sheet structure and produces nanovesicles under physiological conditions. This peptide not only strongly binds with β-tubulin in the taxol binding site but also binds with the microtubule lattice in vitro as well as in intracellular microtubule networks. Interestingly, it shows inhibition of amyloid fibril formation upon co-incubation with Aβ peptide following an interesting mechanistic pathway and excellent neuroprotection in PC12 cells treated with anti-nerve growth factor (NGF). The potential of this hexapeptide opens up a new paradigm in design and development of novel therapeutics for AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.