Soil salinity has emerged as a major obstacle to meet world food demands. Halo-tolerant plant growth promoting rhizobacteria (PGPR) are potential bioinoculants to enhance crop productivity in saline agriculture. Current work was aimed at studying individual or synergetic impact of salt tolerant PGPR on wheat growth and yield under saline conditions. A pot experiment was conducted on two wheat genotypes (Aas-11; salt tolerant and Galaxy-13; salt sensitive) inoculated with Pseudomonas fluorescence, Bacillus pumilus , and Exiguobacterium aurantiacum alone and in consortium. The salt tolerant variety (Aas-11) exhibited maximum root fresh (665.2%) and dry biomass (865%), free proline (138.12%) and total soluble proteins (155.9%) contents, CAT (41.7%) activity and shoot potassium uptake (81.08%) upon inoculation with B. pumilus , while improved shoot dry weight (70.39%), water (23.49%) and osmotic (29.65%) potential, POD (60.51%) activity, enhanced root potassium (286.36%) and shoot calcium (400%) were manifested by E. aurantiacum. Highest shoot length (14.38%), fresh weight (72.73%), potassium (29.7%) and calcium (400%) acquisition as well as glycinebetaine (270.31%) content were found in plants treated with PGPR consortium. On the other hand, in the salt sensitive variety (Galaxy-13), P. fluorescens treated plants showed significantly improved leaf-water relations, glycinebetaine (10.78%) content, shoot potassium (23.07%), root calcium (50%) uptake, and yield parameters, respectively. Plant root length (71.72%) and potassium content (113.39%), root and shoot fresh and dry biomass, turgor potential (231.02%) and free proline (317.2%) content were maximum upon PGPR inoculation in consortium. Overall, Aas-11 (salt tolerant variety) showed significantly better performance than Galaxy-13 (salt sensitive variety). This study recommends B. pumilus and E. aurantiacum for the salt tolerant (Aas-11) and P. fluorescens for the salt sensitive (Galaxy-13) varieties, as potential bioinoculants to augment their growth and yield through modulation of morpho-physiological and biochemical attributes under saline conditions.
Scarcity of water is a severe constraint, which hinders the wheat productivity worldwide. However, foliage application of osmoprotectants may be useful in reducing the drought‐induced yield losses in wheat (Triticum aestivum L.). In this study, potential of foliage applied osmoprotectants (proline, gamma‐aminobutyric acid) in improving the performance of bread wheat against terminal drought was evaluated. Both proline and gamma‐aminobutyric acid (GABA) were foliage applied at 50, 100 and 150 mg/L at anthesis stage (BBCH‐identification code‐ 61), in two bread wheat cultivars viz. Mairaj‐2008 and BARS‐2009. After 1 week of foliage application of these osmoprotectants, drought was imposed by maintaining the pots at 35% water holding capacity. Imposition of drought caused significant reduction in the grain yield of both tested bread wheat cultivars; nonetheless, foliage applied osmoprotectants at either concentration improved the chlorophyll contents, accumulation of proline, glycinebetaine and total soluble phenolics and reduced the malondialdehyde contents, which resulted in better stay green, maintenance of grain weight and grain number under drought stress, thus resulting in better grain yield, water‐use efficiency and transpiration efficiency in both wheat cultivars. However, foliage applied proline at 150 mg/L, and GABA at 100 mg/L was most effective than other concentrations of these osmoprotectants. Performance of cultivar Mairaj‐2008 was quite better than cultivar BARS‐2009. In crux, foliar application of proline and GABA at pre‐optimized rate can be opted as a shotgun approach to improve the performance of wheat under terminal drought.
Citrobacter braakii AN-PRR1 is a potential salt-tolerant, plant growth-promoting rice rhizobacterium isolated from Pakistani soil. The 4.9-Mb draft genome sequence contributes to its taxonomic classification and will reveal the genes putatively responsible for its osmoprotectant and plant growth-promoting activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.