The development of painful paclitaxel-induced peripheral neuropathy (PIPN) represents a major dose-limiting side effect of paclitaxel chemotherapy. Here we report a promising effect of duvelisib (Copiktra), a novel FDA-approved PI3Kd/c isoformspecific inhibitor, in preventing paclitaxel-induced pain-like behavior and pronociceptive signaling in DRGs and spinal cord dorsal horn (SCDH) in rat and mouse model of PIPN. Duvelisib blocked the development of mechanical hyperalgesia in both males and females. Moreover, duvelisib prevented paclitaxel-induced sensitization of TRPV1 receptors, and increased PI3K/ Akt signaling in small-diameter DRG neurons and an increase of CD68 1 cells within DRGs. Specific optogenetic stimulation of inhibitory neurons combined with patch-clamp recording revealed that duvelisib inhibited paclitaxel-induced weakening of inhibitory, mainly glycinergic control on SCDH excitatory neurons. Enhanced excitatory and reduced inhibitory neurotransmission in the SCDH following PIPN was also alleviated by duvelisib application. In summary, duvelisib showed a promising ability to prevent neuropathic pain in PIPN. The potential use of our findings in human medicine may be augmented by the fact that duvelisib is an FDA-approved drug with known side effects.
Magnocellular neurons in the supraoptic nucleus (SON), which synthesize and release arginine vasopressin (AVP) and oxytocin (OT), express several subtypes of ATP-stimulated purinergic P2X receptors (P2XR) that modulate neuronal activity as well as neurotransmitter and hormone release. However, the physiological impact of this modulation is not well understood. Here, we tested a hypothesis that P2XRs play a role in the sustained release of hormones from SON neurons stimulated through fasting/refeeding. We studied the effect of 2 h of refeeding after 48 h of fasting on P2XR and P2YR mRNA expression and ATP-induced presynaptic and postsynaptic responses in the SON of 30-day-old rats. Quantitative real-time PCR revealed that the expression of P2X2R and AVP mRNA was upregulated, whereas P2X4R, P2X7R, P2Y2R, and OT mRNA levels were not significantly changed and P2Y1R mRNA expression was decreased. Whole-cell patch clamp recordings performed on isolated rat brain slices showed that the amplitude of the ATP-stimulated somatic current and the ATP-induced increases in the frequency of spontaneous GABAergic inhibitory postsynaptic currents were significantly higher in SON neurons from fasted/refed rats than in SON neurons from normally fed rats. No evidence was found for changes in the presynaptic effect of ATP in SON neurons not expressing somatic P2XRs. These results suggest that the increased activity of SON neurons synthesizing AVP is associated with enhanced expression of P2X2Rs on neuronal cell bodies and their GABAergic presynaptic nerve terminals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.