This paper presents a traffic characterization study of the popular video sharing service, YouTube. Over a three month period we observed almost 25 million transactions between users on an edge network and YouTube, including more than 600,000 video downloads. We also monitored the globally popular videos over this period of time.In the paper we examine usage patterns, file properties, popularity and referencing characteristics, and transfer behaviors of YouTube, and compare them to traditional Web and media streaming workload characteristics. We conclude the paper with a discussion of the implications of the observed characteristics. For example, we find that as with the traditional Web, caching could improve the end user experience, reduce network bandwidth consumption, and reduce the load on YouTube's core server infrastructure. Unlike traditional Web caching, Web 2.0 provides additional metadata that should be exploited to improve the effectiveness of strategies like caching.
Classification of network traffic using port-based or payload-based analysis is becoming increasingly difficult with many peer-to-peer (P2P) applications using dynamic port numbers, masquerading techniques, and encryption to avoid detection. An alternative approach is to classify traffic by exploiting the distinctive characteristics of applications when they communicate on a network. We pursue this latter approach and demonstrate how cluster analysis can be used to effectively identify groups of traffic that are similar using only transport layer statistics. Our work considers two unsupervised clustering algorithms, namely K-Means and DBSCAN, that have previously not been used for network traffic classification. We evaluate these two algorithms and compare them to the previously used AutoClass algorithm, using empirical Internet traces. The experimental results show that both K-Means and DBSCAN work very well and much more quickly then AutoClass. Our results indicate that although DBSCAN has lower accuracy compared to K-Means and AutoClass, DBSCAN produces better clusters.
In this paper we collect and analyze traceroute measurements 1 to show that large content providers (e.g., Google, Microsoft, Yahoo!) are deploying their own wide-area networks, bringing their networks closer to users, and bypassing Tier-1 ISPs on many paths. This trend, should it continue and be adopted by more content providers, could flatten the Internet topology, and may result in numerous other consequences to users, Internet Service Providers (ISPs), content providers, and network researchers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.