High-volume fly ash concrete (HVFAC) is more cost-efficient, sustainable, and durable than conventional concrete. This report presents a state-of-the-art review of HVFAC properties and different fly ash characterization methods. The main challenges identified for HVFAC for pavements are its early-age properties such as air entrainment, setting time, and strength gain, which are the focus of this research. Five fly ash sources in Illinois have been repeatedly characterized through x-ray diffraction, x-ray fluorescence, and laser diffraction over time. The fly ash oxide compositions from the same source but different quarterly samples were overall consistent with most variations observed in SO3 and MgO content. The minerals present in various fly ash sources were similar over multiple quarters, with the mineral content varying. The types of carbon present in the fly ash were also characterized through x-ray photoelectron spectroscopy, loss on ignition, and foam index tests. A new computer vision–based digital foam index test was developed to automatically capture and quantify a video of the foam layer for better operator and laboratory reliability. The heat of hydration and setting times of HVFAC mixes for different cement and fly ash sources as well as chemical admixtures were investigated using an isothermal calorimeter. Class C HVFAC mixes had a higher sulfate imbalance than Class F mixes. The addition of chemical admixtures (both PCE- and lignosulfonate-based) delayed the hydration, with the delay higher for the PCE-based admixture. Both micro- and nano-limestone replacement were successful in accelerating the setting times, with nano-limestone being more effective than micro-limestone. A field test section constructed of HVFAC showed the feasibility and importance of using the noncontact ultrasound device to measure the final setting time as well as determine the saw-cutting time. Moreover, field implementation of the maturity method based on wireless thermal sensors demonstrated its viability for early opening strength, and only a few sensors with pavement depth are needed to estimate the field maturity.
High-volume fly ash concrete (HVFAC) has improved durability and sustainability properties at a lower cost than conventional concrete, but its early-age properties like strength gain, setting time, and air entrainment can present challenges for application to concrete pavements. This research report helps with the implementation of HVFAC for pavement applications by providing guidelines for HVFAC mix design, testing protocols, and new tools for better quality control of HVFAC properties. Calorimeter tests were performed to evaluate the effects of fly ash sources, cement–fly ash interactions, chemical admixtures, and limestone replacement on the setting times and hydration reaction of HVFAC. To better target the initial air-entraining agent dosage for HVFAC, a calibration curve between air-entraining dosage for achieving 6% air content and fly ash foam index test has been developed. Further, a digital foam index test was developed to make this test more consistent across different labs and operators. For a more rapid prediction of hardened HVFAC properties, such as compressive strength, resistivity, and diffusion coefficient, an oxide-based particle model was developed. An HVFAC field test section was also constructed to demonstrate the implementation of a noncontact ultrasonic device for determining the final set time and ideal time to initiate saw cutting. Additionally, a maturity method was successfully implemented that estimates the in-place compressive strength of HVFAC through wireless thermal sensors. An HVFAC mix design procedure using the tools developed in this project such as the calorimeter test, foam index test, and particle-based model was proposed to assist engineers in implementing HVFAC pavements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.