Background: Inadequate supply of filtering facepiece respirators (FFR) for healthcare workers during a global pandemic such as the novel coronavirus outbreak (SARS-CoV-2) is a serious public health issue. Aim: The objective of this review was to synthesize existing data on the effectiveness of ultraviolet germicidal irradiation (UVGI) on N95 FFR decontamination. Methods: We conducted a systematic review on UVGI in N95 FFRs by using Embase, Medline, Global Health, Google Scholar, WHO feed, and MedRxiv. Two reviewers independently determined study eligibility and extracted and verified predefined data fields. Original research reporting on N95 FFR function, decontamination, or mask fit following UVGI were included. Findings and Conclusions: Twelve studies were identified, comprising of 53 different UVGI intervention arms and 43 N95 FFR models. In all cases, FFRs maintained National Institute for Occupational Safety and Health (NIOSH) certification standards following UVGI. Aerosol penetration averaged 1.19% (0.70-2.48%) and 1.14% (0.57-2.63%) for control and UVGI arms respectively. Airflow resistance for the control arms averaged 9.79 mm H2O (7.97-11.70 mm H2O) vs 9.85 mm H2O (8.33-11.44 mm H2O) for UVGI treatment arms. All UVGI protocols employing a cumulative dose >20,000 J/m2 resulted in a 2 log reduction in viral load. A >3 log reduction was observed in 7 UVIG arms using a dose >40,000 J/m2. Impact of UVIG on fit was evaluated in two studies (16,200; 32,400 J/m2) and did not find evidence of compromise. Altogether, our findings suggest that further work in this area should use a cumulative UV-C dose of 40,000 J/m2 or greater, and confirm appropriate mask fit following decontamination.
Background: In pandemic situations such as COVID-19, shortages of proper protective equipment are common. One solution may be to decontaminate equipment such as facemasks for reuse.Aim: The aim of this review was to collect and synthesize existing information on decontamination of N95 filtering facepiece respirators (FFRs) using microwave and heat-based treatments, with special attention to impact on mask function (aerosol penetration, airflow resistance) and fit.Methods: A systematic review (PROSPERO ID pending) of literature available on Medline, Embase, Global Health, JISRP and JEFF was conducted. Records were screened independently by two reviewers, and data was extracted and analyzed from studies that reported on the effects of microwave- or heat-based decontamination on N95 FFR performance and/or microbial load. Results: All interventions successfully destroyed viral/bacterial contaminants. Other than autoclaving, which significantly increased aerosol penetration, moist and dry microwave and heat conditions did not significantly impact functional parameters or fit. However, several conditions caused physical damage to at least one N95 model. Conclusions: Microwave irradiation and heat provides safe and effective decontamination options for N95 FFR reuse during critical shortages. However, autoclaving masks is not recommended by the evidence in this review. Any mask disinfected using these methods should be inspected for physical degradation before reuse.NOTE: The experiments summarized in this manuscript are performed under specialized laboratory conditions. Household appliances should not be used for any purposes that are not indicated in their manufacturer-supplied guidelines, including mask decontamination. Doing so may lead to damage or injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.