The polymer synthesis of 2,3,5,6-tetrafluoro-4-pyridinecarbonitrile-3,3,3′,3′-tetramethyl-1,1′-spirobisindane-5,5′,6,6′-tetrol copolymer, termed PIM-Py, was investigated under different solvent (dimethylformamide (DMF) and dimethylacetamide/dichlorobenzene) and temperature (65–160 °C) conditions to produce a range of topologically different polymer samples. Characterization of the polymers, particularly with proton NMR spectroscopy and multiple detector SEC analysis, indicated that, like PIM-1, the polymerizations proceeded with a degree of polymer chain branching. This is attributed to the occurrence of monosubstitution reactions, instead of disubstitution, which eventually leads to a significant proportion of colloidal network formation. However, all polymer samples remained soluble/dispersible in chloroform at the concentration required to cast self-standing films. This work reports the first examination of PIM-Py as a membrane for gas separation applications. The most structurally diverse PIM-Py samples produced films that exhibited selectivity/permeability balances in single gas permeation studies above the 2008 Robeson upper bound for the CO2/N2 gas pair. Indeed, a film cast from the highest colloidal network content sample surpassed the recently introduced 2019 CO2/N2 upper bound. After 143 days of aging, a 40 μm self-standing membrane still exhibited a single gas CO2 permeability of 4480 barrer and an ideal CO2/N2 selectivity of 45. The polymers produced in lower temperature reactions in DMF exhibited gas separation performances very similar to a structurally regular “normal” PIM-1 polymer, sitting on or around the 2008 Robeson upper bound line. Single gas permeation measurements to determine CO2/CH4 selectivity showed similar trends across the range of polymer samples, without generally reaching high selectivities as for the CO2/N2 pair. Mixed gas CO2/CH4 permeation measurements with aging were also completed for PIM-Py membranes, which indicated similar gas separation performance to a structurally regular PIM-1 polymer. This study would suggest that, like PIM-1, gas separation performance of PIM-Py is greatly influenced by the topological balance toward branched and network material within the polymer sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.