Understanding neural cell differentiation and neurite extension in three-dimensional scaffolds is critical for neural tissue engineering. This study explores the structure-function relationship between a 3D hydrogel scaffold and neural cell process extension and examines the role of ambient charge on neurite extension in 3D scaffolds. A range of agarose hydrogel concentrations was used to generate varied gel physical structures and the corresponding neurite extension was examined. Agarose gel concentration and the corresponding pore radius are important physical properties that influence neural cell function. The average pore radii of the gels were determined while the gel was in the hydrated state and in two different dehydrated states. As the gel concentration was increased, the average pore radius decreased exponentially. Similarly, the length of neurites extended by E9 chick DRGs cultured in agarose gels depends on gel concentration. The polycationic polysaccharide chitosan and the polyanionic polysaccharide alginate were used to incorporate charge into the 3D hydrogel scaffold, and neural cell response to charge was studied. Chitosan and alginate were covalently bound to the agarose hydrogel backbone using the bi-functional coupling agent 1,1'-carbonyldiimidazole. DRGs cultured in chitosan-coupled agarose gel exhibited a significant increase in neurite length compared to the unmodified agarose control. Conversely, the alginate-coupled agarose gels significantly inhibited neurite extension. This study demonstrates a strong, correlation between the ability of sensory ganglia to extend neurites in 3D gels and the hydrogel pore radius. In addition, our results demonstrate that charged biopolymers influence neurite extension in a polarity dependent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.