In an isothermal compressed air energy storage (CAES) system, it is critical that the high pressure air compressor/expander is both efficient and power dense. The fundamental trade-off between efficiency and power density is due to limitation in heat transfer capacity during the compression/expansion process. In our previous works, optimization of the compression/expansion trajectory has been proposed as a means to mitigate this trade-off. Analysis and simulations have shown that the use of optimized trajectory can increase power density significantly (2–3 fold) over ad-hoc linear or sinusoidal trajectories without sacrificing efficiency especially for high pressure ratios. This paper presents the first experimental validation of this approach in high pressure (7bar to 200bar) compression. Experiments are performed on an instrumented liquid piston compressor. Correlations for the heat transfer coefficient were obtained empirically from a set of CFD simulations under different conditions. Dynamic programming approach is used to calculate the optimal compression trajectories by minimizing the compression time for a range of desired compression efficiencies. These compression profiles (as function of compression time) are then tracked in a liquid piston air compressor testbed using a combination of feed-forward and feedback control strategy. Compared to ad-hoc constant flow rate trajectories, the optimal trajectories double the power density at 80% efficiency or improve the thermal efficiency by 5% over a range of power densities.
For a compressed air energy storage (CAES) system to be competitive for the electrical grid, the air compressor/expander must be capable of high pressure, efficient and power dense. However, there is a trade-off between efficiency and power density mediated by heat transfer, such that as the process time increases, efficiency increases at the expense of decreasing power. This trade-off can be mitigated in a liquid (water) piston air-compressor/expander with enhanced heat transfer. However, in the past, dry air has been assumed in the design and analysis of the compression/expansion process. This paper investigates the effect of moisture on the compression efficiency and power. Evaporation and condensation of water play contradictory roles — while evaporation absorbs latent heat enhancing cooling, the tiny water droplets that form as water condenses also increase the apparent heat capacity. To investigate the effect of moisture, a 0-D numerical model that takes into account the water evaporation/condensation and water droplets have been developed. Results show that inclusion of moisture improves the efficiency-power trade-off minimally at lower flow rates, high efficiency cases, and more significantly at higher flow rates, lower efficiency cases. The improvement is primarily attributed to the increase in apparent heat capacity due to the increased propensity of water to evaporate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.