Background and Purpose— Low-frequency oscillations reflect brain injury but also contribute to normal behaviors. We examined hypotheses relating electroencephalography measures, including low-frequency oscillations, to injury and motor recovery poststroke. Methods— Patients with stroke completed structural neuroimaging, a resting-state electroencephalography recording and clinical testing. A subset admitted to an inpatient rehabilitation facility also underwent serial electroencephalography recordings. The relationship that electroencephalography measures (power and coherence with leads overlying ipsilesional primary motor cortex [iM1]) had with injury and motor status was assessed, focusing on delta (1–3 Hz) and high-beta (20–30 Hz) bands. Results— Across all patients (n=62), larger infarct volume was related to higher delta band power in bilateral hemispheres and to higher delta band coherence between iM1 and bilateral regions. In chronic stroke, higher delta power bilaterally correlated with better motor status. In subacute stroke, higher delta coherence between iM1 and bilateral areas correlated with poorer motor status. These coherence findings were confirmed in serial recordings from 18 patients in an inpatient rehabilitation facility. Here, interhemispheric coherence between leads overlying iM1 and contralesional M1 was elevated at inpatient rehabilitation facility admission compared with healthy controls (n=22), declining to control levels over time. Decreases in interhemispheric coherence between iM1 and contralesional M1 correlated with better motor recovery. Conclusions— Delta band coherence with iM1 related to greater injury and poorer motor status subacutely, while delta band power related to greater injury and better motor status chronically. Low-frequency oscillations reflect both injury and recovery after stroke and may be useful biomarkers in stroke recovery and rehabilitation.
Brain rhythms have been proposed to facilitate brain function, with an especially important role attributed to the phase of low frequency rhythms. Understanding the role of phase in neural function requires interventions that perturb neural activity at a target phase, necessitating estimation of phase in real-time. Current methods for real-time phase estimation rely on bandpass filtering, which assumes narrowband signals and couples the signal and noise in the phase estimate, adding noise to the phase and impairing detections of relationships between phase and behavior. To address this, we propose a state space phase estimator for real-time tracking of phase. By tracking the analytic signal as a latent state, this framework avoids the requirement of bandpass filtering, separately models the signal and the noise, accounts for rhythmic confounds, and provides credible intervals for the phase estimate. We demonstrate in simulations that the state space phase estimator outperforms current state-of-the-art real-time methods in the contexts of common confounds such as broadband rhythms, phase resets and co-occurring rhythms. Finally, we show applications of this approach to in vivo data. The method is available as a ready-to-use plug-in for the OpenEphys acquisition system, making it widely available for use in experiments.
The relationship between structural and functional connectivity has been mostly examined in intact brains. Fewer studies have examined how differences in structure as a result of injury alters function. In this study we analyzed the relationship of structure to function across patients with stroke among whom infarcts caused heterogenous structural damage. We estimated relationships between distinct brain regions of interest (ROIs) from functional MRI in two pipelines. In one analysis pipeline, we measured functional connectivity using correlation and partial correlation between 114 cortical ROIs. We found fMRI-BOLD partial correlation was altered at more edges as a function of the structural connectome (SC) damage, relative to the correlation. In a second analysis pipeline, we limited our analysis to fMRI correlations between pairs of voxels for which we possess SC information. We found that voxel-level functional connectivity showed the effect of structural damage that we could not see when examining correlations between ROIs. Further, the effects of structural damage on functional connectivity are consistent with a model of functional connectivity, diffusion, which expects functional connectivity to result from activity spreading over multiple edge anatomical paths.
Neural oscillations may contain important information pertaining to stroke rehabilitation. This study examined the predictive performance of electroencephalography‐derived neural oscillations following stroke using a data‐driven approach. Individuals with stroke admitted to an inpatient rehabilitation facility completed a resting‐state electroencephalography recording and structural neuroimaging around the time of admission and motor testing at admission and discharge. Using a lasso regression model with cross‐validation, we determined the extent of motor recovery (admission to discharge change in Functional Independence Measurement motor subscale score) prediction from electroencephalography, baseline motor status, and corticospinal tract injury. In 27 participants, coherence in a 1–30 Hz band between leads overlying ipsilesional primary motor cortex and 16 leads over bilateral hemispheres predicted 61.8% of the variance in motor recovery. High beta (20–30 Hz) and alpha (8–12 Hz) frequencies contributed most to the model demonstrating both positive and negative associations with motor recovery, including high beta leads in supplementary motor areas and ipsilesional ventral premotor and parietal regions and alpha leads overlying contralesional temporal–parietal and ipsilesional parietal regions. Electroencephalography power, baseline motor status, and corticospinal tract injury did not significantly predict motor recovery during hospitalization (R2 = 0–6.2%). Findings underscore the relevance of oscillatory synchronization in early stroke rehabilitation while highlighting contributions from beta and alpha frequency bands and frontal, parietal, and temporal–parietal regions overlooked by traditional hypothesis‐driven prediction models.
Stroke is a leading cause of death and the leading cause of long-term disability, but its electrophysiological basis is poorly understood. Characterizing acute ischemic neuronal activity dynamics is important for understanding the temporal and spatial development of ischemic pathophysiology and determining neuronal activity signatures of ischemia. Using a 32-microelectrode array spanning the depth of cortex, electrophysiological recordings generated for the first time a continuous spatiotemporal profile of local field potentials (LFP) and multi-unit activity (MUA) before (baseline) and directly after (0–5 h) distal, permanent MCA occlusion (pMCAo) in a rat model. Although evoked activity persisted for hours after pMCAo with minor differences from baseline, spatiotemporal analyses of spontaneous activity revealed that LFP became spatially and temporally synchronized regardless of cortical depth within minutes after pMCAo and extended over large parts of cortex. Such enhanced post-ischemic synchrony was found to be driven by increased bursts of low multi-frequency oscillations and continued throughout the acute ischemic period whereas synchrony measures minimally changed over the same recording period in surgical sham controls. EEG recordings of a similar frequency range have been applied to successfully predict stroke damage and recovery, suggesting clear clinical relevance for our rat model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.