Currently, many critical care indices are not captured automatically at a granular level, rather are repetitively assessed by overburdened nurses. In this pilot study, we examined the feasibility of using pervasive sensing technology and artificial intelligence for autonomous and granular monitoring in the Intensive Care Unit (ICU). As an exemplary prevalent condition, we characterized delirious patients and their environment. We used wearable sensors, light and sound sensors, and a camera to collect data on patients and their environment. We analyzed collected data to detect and recognize patient’s face, their postures, facial action units and expressions, head pose variation, extremity movements, sound pressure levels, light intensity level, and visitation frequency. We found that facial expressions, functional status entailing extremity movement and postures, and environmental factors including the visitation frequency, light and sound pressure levels at night were significantly different between the delirious and non-delirious patients. Our results showed that granular and autonomous monitoring of critically ill patients and their environment is feasible using a noninvasive system, and we demonstrated its potential for characterizing critical care patients and environmental factors.
Background Chronic pain, including arthritis, affects about 100 million adults in the United States. Complexity and diversity of the pain experience across time and people and its fluctuations across and within days show the need for valid pain reports that do not rely on patient’s long-term recall capability. Smartwatches can be used as digital ecological momentary assessment (EMA) tools for real-time collection of pain scores. Smartwatches are generally less expensive than smartphones, are highly portable, and have a simpler user interface, providing an excellent medium for continuous data collection and enabling a higher compliance rate. Objective The aim of this study was to explore the attitudes and perceptions of older adults towards design and technological aspects of a smartwatch framework for measuring patient report outcomes (PRO) as an EMA tool. Methods A focus group session was conducted to explore the perception of participants towards smartwatch technology and its utility for PRO assessment. Participants included older adults (age 65+), with unilateral or bilateral symptomatic knee osteoarthritis. A preliminary user interface with server communication capability was developed and deployed on 10 Samsung Gear S3 smartwatches and provided to the users during the focus group. Pain was designated as the main PRO, while fatigue, mood, and sleep quality were included as auxiliary PROs. Pre-planned topics included participants’ attitude towards the smartwatch technology, usability of the custom-designed app interface, and suitability of the smartwatch technology for PRO assessment. Discussions were transcribed, and content analysis with theme characterization was performed to identify and code the major themes. Results We recruited 19 participants (age 65+) who consented to take part in the focus group study. The overall attitude of the participants toward the smartwatch technology was positive. They showed interest in the direct phone-call capability, availability of extra apps such as the weather apps and sensors for tracking health and wellness such as accelerometer and heart rate sensor. Nearly three-quarters of participants showed willingness to participate in a one-year study to wear the watch daily. Concerns were raised regarding usability, including accessibility (larger icons), notification customization, and intuitive interface design (unambiguous icons and assessment scales). Participants expressed interest in using smartwatch technology for PRO assessment and the availability of methods for sharing data with health care providers. Conclusions All participants had overall positive views of the smartwatch technology for measuring PROs to facilitate patient-provider communications and to provide more targeted treatments and interventions in the future. Usability concerns were the major issues that will require special consideration in future smartwatch PRO user interf...
Electronic Health Records (EHR) are mainly designed to record relevant patient information during their stay in the hospital for administrative purposes. They additionally provide an efficient and inexpensive source of data for medical research, such as patient outcome prediction. In this study, we used preoperative Electronic Health Records to predict postoperative delirium. We compared the performance of seven machine learning models on delirium prediction: linear models, generalized additive models, random forests, support vector machine, neural networks, and extreme gradient boosting. Among the models evaluated in this study, random forests and generalized additive model outperformed the other models in terms of the overall performance metrics for prediction of delirium, particularly with respect to sensitivity. We found that age, alcohol or drug abuse, socioeconomic status, underlying medical issue, severity of medical problem, and attending surgeon can affect the risk of delirium.
Smartphone and smartwatch technology is changing the transmission and monitoring landscape for patients and research participants to communicate their healthcare information in real time. Flexible, bidirectional and real-time control of communication allows development of a rich set of healthcare applications that can provide interactivity with the participant and adapt dynamically to their changing environment. Additionally, smartwatches have a variety of sensors suitable for collecting physical activity and location data. The combination of all these features makes it possible to transmit the collected data to a remote server, and thus, to monitor physical activity and potentially social activity in real time. As smartwatches exhibit high user acceptability and increasing popularity, they are ideal devices for monitoring activities for extended periods of time to investigate the physical activity patterns in free-living condition and their relationship with the seemingly random occurring illnesses, which have remained a challenge in the current literature. Therefore, the purpose of this study was to develop a smartwatch-based framework for real-time and online assessment and mobility monitoring (ROAMM). The proposed ROAMM framework will include a smartwatch application and server. The smartwatch application will be used to collect and preprocess data. The server will be used to store and retrieve data, remote monitor, and for other administrative purposes. With the integration of sensor-based and user-reported data collection, the ROAMM framework allows for data visualization and summary statistics in real-time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.