Abstract. The huge size of remote sensing data implies the information technology infrastructure to store, manage, deliver and process the data itself. To compensate these disadvantages, compressing technique is a possible solution. JPEG2000 compression provide lossless and lossy compression with scalability for lossy compression. As the ratio of lossy compression getshigher, the size of the file reduced but the information loss increased. This paper tries to investigate the JPEG2000 compression effect on remote sensing data of different spatial resolution. Three set of data (Landsat 8, SPOT 6 and Pleiades) processed with five different level of JPEG2000 compression. Each set of data then cropped at a certain area and analyzed using unsupervised classification. To estimate the accuracy, this paper utilized the Mean Square Error (MSE) and the Kappa coefficient agreement. The study shows that compressed scenes using lossless compression have no difference with uncompressed scenes.Furthermore, compressed scenes using lossy compression with the compression ratioless than 1:10 have no significant difference with uncompressed data with Kappa coefficient higher than 0.8.
Haze is one of radiometric quality parameters in remote sensing imagery. With certain atmospheric correction, haze is possible to be removed. Nevertheless, an efficient method for haze removal is still a challenge. Many methods have been developed to remove or to minimize the haze disruption. While most of the developed methods deal with removing haze over land areas, this paper tried to focus to remove haze from shallow water areas. The method presented in this paper is a simple subtraction algorithm between a band that reflected by water and a band that absorbed by water. This paper used data from Landsat 8 with visible bands as a band that reflected by water while the band that absorbed by water represented by NIR, SWIR-1, and SWIR-2 bands. To validate the method, a reference data which relatively clear of cloud and haze contamination is selected. The pixel numbers from certain points are selected and collected from data scene, results scene and reference scene.Those pixel numbers, then being compared each other to get a correlation number between data scene to reference scene and between result scene and reference scene. The comparison shows that the method using NIR, SWIR-1, and SWIR-2 all significantly improved correlations numbers between result scene with reference scene to higher than 0.9. The comparison also indicates that haze removal result using NIR band had the highest correlation with reference data..
In the processing and analysis of remote-sensing data, cloud that interferes with earth-surface data is still a challenge. Many methods have already been developed to identify cloud, and these can be classified into two categories: single-date and multi-date identification. Most of these methods also utilize the thresholding method which itself can be divided into two categories: local thresholding and global thresholding. Local thresholding works locally and is different for each pixel, while global thresholding works similarly for every pixel. To determine the global threshold, two approaches are commonly used: fixed value as threshold and adapted threshold. In this paper, we propose a cloud-identification method with an adapted threshold using K-means clustering. Each related multitemporal pixel is processed using K-means clustering to find the threshold. The threshold is then used to distinguish clouds from non-clouds. By using the L8 Biome cloud-cover assessment as a reference, the proposed method results in Kappa coefficient of above 0.9. Furthermore, the proposed method has lower levels of false negatives and omission errors than the FMask method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.