Incorporating solar energy into a grid necessitates an accurate power production forecast for photovoltaic (PV) facilities. In this research, output PV power was predicted at an hour ahead on yearly basis for three different PV plants based on polycrystalline (p-si), monocrystalline (m-si), and thin-film (a-si) technologies over a four-year period. Wind speed, module temperature, ambiance, and solar irradiation were among the input characteristics taken into account. Each PV plant power output was the output parameter. A deep learning method (RNN-LSTM) was developed and evaluated against existing techniques to forecast the PV output power of the selected PV plant. The proposed technique was compared with regression (GPR, GPR (PCA)), hybrid ANFIS (grid partitioning, subtractive clustering and FCM) and machine learning (ANN, SVR, SVR (PCA)) methods. Furthermore, different LSTM structures were also investigated, with recurrent neural networks (RNN) based on 2019 data to determine the best structure. The following parameters of prediction accuracy measure were considered: RMSE, MSE, MAE, correlation (r) and determination (R2) coefficients. In comparison to all other approaches, RNN-LSTM had higher prediction accuracy on the basis of minimum (RMSE and MSE) and maximum (r and R2). The p-si, m-si and a-si PV plants showed the lowest RMSE values of 26.85 W/m2, 19.78 W/m2 and 39.2 W/m2 respectively. Moreover, the proposed method was found to be robust and flexible in forecasting the output power of the three considered different photovoltaic plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.