The risk of developing endometrial cancer increases significantly for women treated with tamoxifen (TAM); the present study was designed to investigate the mechanism of this carcinogenic effect. Endometrial tissue was obtained from 16 women treated for varying lengths of time with TAM and from 15 untreated control subjects. DNA was analyzed with a (32)P-post-labeling/HPLC on-line monitoring assay capable of detecting 2.5 adducts/10(10) nucleotides. Using this sensitive and specific assay, TAM-DNA adducts were detected in eight women. The major adducts found were trans and cis epimers of alpha-(N(2)-deoxyguanosinyl) tamoxifen (dG-N(2)-TAM); levels ranged between 0.2-12 and 1.6-8.3 adducts/10(8) nucleotides, respectively. There was marked inter-individual variation in the relative amounts of cis and trans adducts present. Low levels (0.74-1.1 adducts/10(8) nucleotides) of trans and cis forms of dG-N(2)-TAM N-oxide were detected in one patient. DNA adducts derived from 4-hydroxytamoxifen quinone methide were not observed. We conclude from this analysis that trans and cis dG-N(2)-TAMs accumulate in significant amounts in the endometrium of many, but not all, women treated with this drug. The level of adducts found, coupled with the previous demonstration of their mutagenicity [Cancer Res., 59, 2091, 1999], suggest that a genotoxic mechanism may be responsible for TAM-induced endometrial cancer.
Tamoxifen-DNA adducts detected in the liver of mice treated with tamoxifen have not yet been identified. In the present study a new type of tamoxifen-DNA adduct, four stereoisomers of alpha-(N:(2)-deoxyguanosinyl)tamoxifen N:-oxide 3'-monophosphate (dG(3'P)-N:(2)-TAM N:-oxide) were prepared as standard DNA adducts by reacting 2'-deoxyguanosine 3'-monophosphate with trans-alpha-acetoxytamoxifen N:-oxide in addition to four stereoisomers of alpha-(N:(2)-deoxyguano- sinyl)tamoxifen 3'-monophosphate (dG(3'P)-N:(2)-TAM) that was reported previously. Liquid chromatography-electrospray ionization-mass spectrometry of the reaction products gave the most abundant ion at m/z 731 ([M - H](-)), which corresponded to dG(3'P)-N:(2)-TAM N:-oxide. The modified products digested by alkaline phosphatase corresponded to the isomers of dG-N:(2)-TAM N:-oxide whose structures were identified previously by mass spectrometry and nuclear magnetic resonance. Using these standard markers, we analyzed the hepatic DNA adducts of female DBA/2 mice treated with tamoxifen at a dosage of 120 mg/kg/day for 7 days by (32)P-post-labeling coupled with an HPLC/radioactive detector. Mixtures of eight isomers of dG(3'P)-N:(2)-TAM and dG(3'P)-N:(2)-TAM N-oxide were separated into six peaks, since each of the cis epimers were not separated under the present HPLC conditions. Nine adducts were detected in all liver samples of mice. An epimer of trans-dG(3'P)-N:(2)-TAM was detected as the principal DNA adduct at a level of 29.0 adducts/10(8) nucleotides, which accounted for 53.3% of the total tamoxifen-DNA adducts. Lesser amounts of cis-dG(3'P)-N:(2)-TAM (2.8%) were also observed. An epimer of the trans-dG(3'P)-N:(2)-TAM N:-oxide (3.9 adducts/10(8) nucleotides) was detected as the third biggest adduct (7.2% of the total). The cis-dG(3'P)-N:(2)-TAM N:-oxide (0.4 adducts/10(8) nucleotides) accounted for 0.7% of the total. Thus, dG(3'P)-N:(2)-TAM and dG(3'P)-N:(2)-TAM N:-oxide were identified in tamoxifen-treated mouse liver.
Treatment with tamoxifen increased the risk of endometrial cancers in breast cancer patients and women participating in the chemoprevention study. In our laboratory, tamoxifen-DNA adducts, including alpha-(N(2)-deoxyguanosinyl)tamoxifen (dG-N(2)-TAM), were detected in the endometrium of women taking tamoxifen [Shibutani, S., et al. (1999) Chem. Res. Toxicol. 12, 646-653]. On the basis of recent animal studies, deoxyguanosinyl-N-desmethyltamoxifen (dG-N-desmethylTAM) adducts are also suspected to be formed in the liver. In the study presented here, we synthesized alpha-acetoxy-N-desmethyltamoxifen as a model activated metabolite of N-desmethyltamoxifen. The overall yield of alpha-acetoxy-N-desmethyltamoxifen from alpha-hydroxytamoxifen was approximately 42%. alpha-Acetoxy-N-desmethyltamoxifen was highly reactive to 2'-deoxyguanosine, as was similarly observed for tamoxifen alpha-sulfate. The two reaction products were identified as a mixture of epimers of the trans form or cis form of alpha-(N(2)-deoxyguanosinyl)-N-desmethyltamoxifen (dG-N(2)-N-desmethylTAM) by mass and proton magnetic resonance spectroscopy. In addition, the trans and cis forms of dG 3'-monophosphate-N(2)-N-desmethylTAM were prepared as standard markers for (32)P-postlabeling/HPLC analysis. Using this technique, dG-N(2)-N-desmethylTAM adducts were detected in calf thymus DNA reacted with alpha-acetoxy-N-desmethyltamoxifen.
A new HPLC gradient system was developed for (32)P-postlabeling analysis to identify and quantify hepatic tamoxifen-DNA adducts of rats and mice treated with tamoxifen. Four stereoisomers of alpha-(N(2)-deoxyguanosinyl)tamoxifen (dG(3')(P)-N(2)-TAM), alpha-(N(2)-deoxyguanosinyl)-N-desmethyltamoxifen (dG(3')(P)-N(2)-N-desmethyl-TAM), and alpha-(N(2)-deoxyguanosinyl)tamoxifen N-oxide (dG(3')(P)-N(2)-TAM N-oxide) were prepared by reacting either alpha-acetoxytamoxifen, alpha-acetoxy-N-desmethyltamoxifen or alpha-acetoxytamoxifen N-oxide with 2'-deoxyguanosine 3'-monophosphate, and used as standard markers for (32)P-postlabeling/HPLC analysis. Our HPLC gradient system can separate the above 12 nucleotide isomers as nine peaks; six peaks representing two each trans epimers (fr-1 and fr-2) of dG(3')(P)-N(2)-TAM, dG(3')(P)-N(2)-N-desmethyl-TAM and dG(3')(P)-N(2)-TAM N-oxide, and three peaks representing a mixture of two cis epimers (fr-3 and fr-4) of nucleotides. Tamoxifen was given to female F344 rats and DBA/2 mice by gavage at doses of 45 mg/kg/day and 120 mg/kg/day, respectively, for 7 days. Totally 15 and 17 tamoxifen-DNA adducts were detected in rats and mice, respectively; among them 13 adducts were observed in both rats and mice. trans-dG-N(2)-TAM (fr-2) and trans-dG(3')(P)-N(2)-N-desmethyl-TAM (fr-2) were two major adducts in both animals. Except for these two adducts, trans-dG-N(2)-TAM N-oxide (fr-2) was the third abundant adduct that accounted for 6.4% of the total adducts in mice, while this accounted for only 0.3% in rats. A trans-isomer (fr-1) and cis-isomers (fr-3 and -4) of dG(3')(P)-N(2)-TAM, dG(3')(P)-N(2)-N-desmethyl-TAM and dG(3')(P)-N(2)-TAM N-oxide were also detected as minor adducts in both animals except for cis-form of dG-N(2)-TAM N-oxide in rats. Although the administered dose for rats was 2.7-fold less than that for mice, the total adduct level of rats (216 adducts/10(8) nucleotides) were 3.8-fold higher than mice (56.2 adducts/10(8) nucleotides). Thus, these three types of tamoxifen adducts accounted for 95.0 and 92.5% of the total DNA adducts of the rats and mice, respectively. The formation of tamoxifen adducts primarily resulted from alpha-hydroxylation of tamoxifen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.