The suffix array and its variants are text-indexing data structures that have become indispensable in the field of bioinformatics. With the uninitiated in mind, we provide an accessible exposition of the SA-IS algorithm, which is the state of the art in suffix array construction. We also describe DisLex, a technique that allows standard suffix array construction algorithms to create modified suffix arrays designed to enable a simple form of inexact matching needed to support ‘spaced seeds’ and ‘subset seeds’ used in many biological applications.
Summary: Many high-throughput sequencing experiments produce paired DNA reads. Paired-end DNA reads provide extra positional information that is useful in reliable mapping of short reads to a reference genome, as well as in downstream analyses of structural variations. Given the importance of paired-end alignments, it is surprising that there have been no previous publications focusing on this topic. In this article, we present a new probabilistic framework to predict the alignment of paired-end reads to a reference genome. Using both simulated and real data, we compare the performance of our method with six other read-mapping tools that provide a paired-end option. We show that our method provides a good combination of accuracy, error rate and computation time, especially in more challenging and practical cases, such as when the reference genome is incomplete or unavailable for the sample, or when there are large variations between the reference genome and the source of the reads. An open-source implementation of our method is available as part of Last, a multi-purpose alignment program freely available at http://last.cbrc.jp.Contact: martin@cbrc.jpSupplementary information: Supplementary data are available at Bioinformatics online.
Performing sequence alignment to identify structural variants, such as large deletions, from genome sequencing data is a fundamental task, but current methods are far from perfect. The current practice is to independently align each DNA read to a reference genome. We show that the propensity of genomic rearrangements to accumulate in repeat-rich regions imposes severe ambiguities in these alignments, and consequently on the variant calls—with current read lengths, this affects more than one third of known large deletions in the C. Venter genome. We present a method to jointly align reads to a genome, whereby alignment ambiguity of one read can be disambiguated by other reads. We show this leads to a significant improvement in the accuracy of identifying large deletions (≥20 bases), while imposing minimal computational overhead and maintaining an overall running time that is at par with current tools. A software implementation is available as an open-source Python program called JRA at https://bitbucket.org/jointreadalignment/jra-src.
With the growing interest in using phages to combat antimicrobial resistance, computational methods for predicting phage-host interactions have been explored to help shortlist candidate phages. Most existing models consider entire proteomes and rely on manual feature engineering, which poses difficulty in selecting the most informative sequence properties to serve as input to the model. In this paper, we framed phage-host interaction prediction as a multiclass classification problem that takes as input the embeddings of a phage’s receptor-binding proteins, which are known to be the key machinery for host recognition, and predicts the host genus. We explored different protein language models to automatically encode these protein sequences into dense embeddings without the need for additional alignment or structural information. We show that the use of embeddings of receptor-binding proteins presents improvements over handcrafted genomic and protein sequence features. The highest performance was obtained using the transformer-based protein language model ProtT5, resulting in a 3% to 4% increase in weighted F1 and recall scores across different prediction confidence thresholds, compared to using selected handcrafted sequence features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.