This paper proposes the use of Shewhart test to reduce the number of data-transmissions in IoT networks. It is shown to outperform the widely-used least mean square (LMS) based data reduction method in terms of the number of data-transmissions, implementation complexity and mean square error (MSE) in prediction of time-series data at the sink node based on the partial transmissions of the measured time-series data from the sensor node. The paper also proposes the use of piggybacking and interpolation to further reduce the MSE of the estimated time-series data at the sink node without increasing the number of packet transmissions. The timeseries data used for the comparison of data reduction algorithms is a set of measured temperature values in indoor and outdoor scenarios for four days using customdesigned wireless sensor nodes. To express the effectiveness of the piggybacked transmissions on battery lifetime, the total current consumption of the sensor node is measured for different number of piggybacks and corresponding battery lifetime is estimated. It is shown that the proposed piggyback approach significantly reduces the MSE at the cost of slight decrease in battery-lifetime.
Millimeter wave (mmWave) localization algorithms exploit the quasi-optical propagation of mmWave signals, which yields sparse angular spectra at the receiver. Geometric approaches to angle-based localization typically require to know the map of the environment and the location of the access points. Thus, several works have resorted to automated learning in order to infer a device's location from the properties of received mmWave signals. However, collecting training data for such models is a significant burden. In this work, we propose a shallow neural network model to localize mmWave devices indoors. This model requires significantly fewer weights than those proposed in the literature. Therefore, it is amenable for implementation in resource-constrained hardware, and needs fewer training samples to converge. We also propose to relieve training data collection efforts by retrieving (inherently imperfect) location estimates from geometry-based mmWave localization algorithms. Even in this case, our results show that the proposed neural networks perform as good as or better than state-of-the-art algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.