The reconstruction of electrophysiological sources within the brain is sensitive to the constructed head model, which depends on the positioning accuracy of anatomical landmarks known as fiducials. In this work, we propose an algorithm for the automatic detection of fiducial landmarks of EEG electrodes on the 3D human head model. Our proposal combines a dimensional reduction approach with a perspective projection from 3D to 2D object space; the eye and ear automatic detection in a 2D face image by two cascades of classifiers and geometric transformations to obtain 3D spatial coordinates of the landmarks and to generate the head coordinate system, This is accomplished by considering the characteristics of the scanner information. Capturing the 3D model of the head is done with Occipital Inc. ST01 structure sensor and the implementation of our algorithm was carried out on MATLAB R2018b using the Computer Vision Toolbox and the FieldTrip Toolbox. The experimental results were aimed at recursively exploring the efficacy of the facial feature detectors as a function of the projection angle; they show that robust results are obtained in terms of false acceptance rate. Our proposal is an initial step of an approach for the automatic digitization of electrode locations. The experimental results demonstrate that the proposed method detects anatomical facial landmarks automatically, accurately, and rapidly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.