A method is described to obtain multicollision dissociation threshold (MCDT) values. These values provide relative reaction thresholds for dissociation in the three major gas-phase fragmentation reactions of oligosaccharides complexed to alkali metal ions. The quasimolecular ions are produced using matrix-assisted laser desorption/ionization Fourier transform mass spectrometry. The MCDTs for alkali metal ion dissociation and glycosidic bond and cross-ring cleavages were resolved from the kinetic energy dependence of collision-induced dissociation (CID) products. The relative strengths of alkali metal ion binding to N,N'-diacetylchitobiose (chitobiose) and N,N',N"-triacetylchitotriose (chitotriose) were probed using sustained off-resonance irradiation (SORI) CID. Experiments to evaluate MCDT values and the method for obtaining them were performed by studying alkali metal ion coordinated crown ethers. Molecular dynamic simulations were also performed to provide insight into the alkali metal ion binding of chitin-based oligosaccharides. The relative dissociation thresholds of glycosidic bond cleavages and cross-ring cleavages were determined for various alkali metal ion coordinated oligosaccharides. The activation barriers of glycosidic bond cleavages were found to depend on the size of the alkali metal ion. Cross-ring cleavages were found to be independent of the alkali metal ion but dependent on linkage type. The results suggest that glycosidic bond cleavages are charge-induced while cross-ring cleavages are charge-remote processes.
A new anion dopant for oligosaccharides is developed for use in matrix-assisted laser desorption/ionization mass spectrometry. Two types of sulfate-attached quasimolecular ions are formed in the negative ion mode when neutral oligosaccharides are doped with dilute H2SO4 solutions. Under mild conditions, i.e., low H2SO4 concentration (approximately 10(-3) M) and threshold laser fluence, a sulfate adduct [M + HSO4]- is formed. With more concentrated H2SO4 solutions (approximately 10(-2) M) and higher laser fluence, in situ derivatization of the oligosaccharides occurs to produce an ion whose m/z corresponds to a sulfate derivative [M + HSO4 - H2O]-. Hydrogen sulfate appears to be a general anion dopant because it forms complexes with a wide variety of neutral oligosaccharides. Conversely, anionic oligosaccharides form neither the adduct nor the derivative. The combination of complex formation (with neutral oligosaccharides) and the deprotonation of acidic oligosaccharides allows simultaneous detection of the respective mixture.
Alkylsulfonates are examined as anion dopants for the matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) of neutral oligosaccharides. The anion dopants allow neutral oligosaccharides to be examined in the same mixture as acidic oligosaccharides. The alkylsulfonate dopants interact strongly with the oligosaccharide to produce a quasimolecular ion composed of the oligosaccharides and the deprotonated alkylsulfonates. Compounds as small as disaccharides to large branched oligosaccharides can all be examined. The new series of alkylsulfonates works as well as HSO4- in terms of signal-to-noise ratio, sensitivity, and ease of preparation in the negative ion mode. The alkylsulfonates are used to construct a calibration curve for obtaining the relative amounts of varying neutral and acidic oligosaccharide mixtures. With the anion dopants, the MALDI-FTMS signals are shown to have a linear relationship with the molar ratios of the neutral and sialylated oligosaccharides. The method is also used to monitor the product of a desialylation reaction by acid hydrolysis.
Background and Objective: Intravenous (IV) infusions of telavancin for injection are generally administered in-hospital, but in some circumstances they may be administered in an outpatient environment. In that setting, antibiotics may be premixed and frozen. This study determined the chemical stability of nonpreserved telavancin in various commonly used reconstitution diluents stored in IV bags (polyvinyl chloride [PVC] and PVC-free) at -20°C (-4°F) without light. Methods: Telavancin (750 mg/vial) was reconstituted with 5% dextrose injection USP (D5W) or 0.9% sodium chloride injection USP (NS) to obtain drug solutions at approximately 15 mg/mL. Infusion solutions of telavancin at diluted concentrations of 0.6 mg/mL and 8.0 mg/mL covering the range utilized in clinical practice were prepared in both PVC and PVC-free IV bags using D5W or NS solutions. The infusion solutions were stored under frozen conditions (-20°C ± 5°C [-4°F ± 41°F]) and the chemical stability was evaluated for up to 32 days. Telavancin concentration, purity, and degradant levels were determined using a stability-indicating high-performance liquid chromatography (HPLC) method. Results: Telavancin IV infusion solutions in D5W or NS at 0.6 mg/mL and 8 mg/mL and stored at -20°C (-4°F) met the chemical stability criteria when tested on days 0, 7, 14, and 32. The assayed telavancin concentration at each time point was within 97% to 103% of the initial mean assay value. The total degradants quantified by the HPLC stability-indicating method did not show any significant change over the 32-day study period. Conclusion: Telavancin IV infusion solutions (in D5W or NS) in both PVC and PVC-free IV bags were stable for at least 32 days when stored at -20°C (-4°F) without light. These results provide prolonged frozen stability data further to that previously established for 7 days under refrigerated conditions (2°C-8°C [36°F -46°F]), and for 12 hours at room temperature when diluted into IV bags containing D5W, NS, or lactated Ringer's solution. The stability of telavancin intravenous (IV) infusion solutions when diluted into IV bags containing 5% dextrose (D5W), 0.9% sodium chloride solution (NS), or lactated Ringer's solution (LR) 6 under refrigerated conditions (2°C-8°C [36°F -46°F]) for 7 days or at room temperature for 12 hours was established and approved by the US Food and Drug Administration (FDA) for incorporation into the product label. The purpose of this additional study was to determine the chemical stability of reconstituted telavancin IV infusion solution after storage at frozen conditions (-20°C ± 5°C [-4°F ± 41°F]) for up to 32 days. Key Words-frozen METHODS Materials Sample Preparation for Chemical AnalysisSamples of telavancin in the drug product vial with butyl rubber stoppers were reconstituted in triplicate with appropriate amounts of the reconstitution diluents (D5W or NS) to yield a telavancin concentration of 15 mg/mL. Vial reconstitution to 15 mg/mL is described in the telavancin label.Intravenous infusion solutions at t...
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.