The primary constituents of a 0.22-terahertz (THz) sheet-beam traveling-wave tube (TWT) amplifier, composed of a staggered double grating array waveguide, have been designed for broadband THz operation (∼30%) using the fundamental passband (TE-mode). Currently, we are looking into the possibility of a pulsed low-duty test of this device as a proof of principle (POP) and have been making efforts to construct the system. The optimally designed input coupler has ≤ 1 dB insertion loss at 0.22 THz with ∼75 GHz (34%) 1-dB matching bandwidths. A thin mica RF window provides a coupling bandwidth spanning multiple octaves. The collector is designed to have a jog for collecting the spent beam along the RF path coupled to the output RF window. Computer simulations show that the collector hybridized with a WR-4 window has ∼60 GHz matching bandwidth with ∼ −0.5 dB insertion loss at 0.22 THz. The hybrid periodic permanent-magnet design combined with the quadrupole magnet (PPM-QM), intended for low-duty pulse operation in a proof-of-concept experiment, allows the elliptical sheet beam from an existing gun (25 : 1 aspect ratio) to unoptimized gun to have 73% beam transmission. The POP pulsed test is designed to be matched to our existing system, which will thereby tolerate beam transmission. However, a proper gun for the sheet-beam tunnel of the designed circuit will provide much better transmission. In our prior works, we successfully proved at W-band that the magnet design provided > 99% beam transmission of a 10:1 aspect ratio sheet beam. Most of the TWT circuit components have been designed, and currently, a full simulation modeling effort is being conducted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.