Bacteria use small diffusible molecules to exchange information in a process called quorum sensing. An important class of autoinducers used by Gram-negative bacteria is the family of N-acylhomoserine lactones. Here, we report the discovery of a previously undescribed nonenzymatically formed product from N-(3-oxododecanoyl)-L-homoserine lactone; both the N-acylhomoserine and its novel tetramic acid degradation product, 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione, are potent antibacterial agents. Bactericidal activity was observed against all tested Gram-positive bacterial strains, whereas no toxicity was seen against Gram-negative bacteria. We propose that Pseudomonas aeruginosa utilizes this tetramic acid as an interference strategy to preclude encroachment by competing bacteria. Additionally, we have discovered that this tetramic acid binds iron with comparable affinity to known bacterial siderophores, possibly providing an unrecognized mechanism for iron solubilization. These findings merit new attention such that other previously identified autoinducers be reevaluated for additional biological functions.tetramic acid ͉ bactericidal agents ͉ evolution
Innate immune system receptors function as sensors of infection and trigger the immune responses through ligand-specific signaling pathways. These ligands are pathogen-associated products, such as components of bacterial walls and viral nuclear acids. A common response to such ligands is the activation of mitogen-activated protein kinase p38, whereas doublestranded viral RNA additionally induces the phosphorylation of eukaryotic translation initiation factor 2␣ (eIF2␣). Here we have shown that p38 and eIF2␣ phosphorylation represent two biochemical markers of the effects induced by N-(3-oxo-acyl)homoserine lactones, the secreted products of a number of Gramnegative bacteria, including the human opportunistic pathogen Pseudomonas aeruginosa. Furthermore, N-(3-oxo-dodecanoyl)homoserine lactone induced distension of mitochondria and the endoplasmic reticulum as well as c-jun gene transcription. These effects occurred in a wide variety of cell types including alveolar macrophages and bronchial epithelial cells, requiring the structural integrity of the lactone ring motif and its natural stereochemistry. These findings suggest that N-(3-oxo-acyl)homoserine lactones might be recognized by receptors of the innate immune system. However, we provide evidence that N-(3-oxo-dodecanoyl)homoserine lactone-mediated signaling does not require the presence of the canonical innate immune system receptors, Toll-like receptors, or two members of the NLR/Nod/Caterpillar family, Nod1 and Nod2. These data offer a new understanding of the effects of N-(3-oxo-dodecanoyl)homoserine lactone on host cells and its role in persistent airway infections caused by P. aeruginosa.
Reactions with, in, or on water? Despite claims to the contrary, few examples of truly aqueous organocatalysis have been reported. Close examination of the data from recent reports reveals that these reactions likely occur in concentrated organic phases.
Rho is a hexameric RNA/DNA helicase/translocase that terminates transcription of select genes in bacteria. The naturally occurring antibiotic, bicyclomycin (BCM), acts as a noncompetitive inhibitor of ATP turnover to disrupt this process. We have determined three independent X-ray crystal structures of Rho complexed with BCM and two semisynthetic derivatives, 5a-(3-formylphenylsulfanyl)-dihydrobicyclomycin (FPDB) and 5a-formylbicyclomycin (FB) to 3.15, 3.05, and 3.15 A resolution, respectively. The structures show that BCM and its derivatives are nonnucleotide inhibitors that interact with Rho at a pocket adjacent to the ATP and RNA binding sites in the C-terminal half of the protein. BCM association prevents ATP turnover by an unexpected mechanism, occluding the binding of the nucleophilic water molecule required for ATP hydrolysis. Our data explain why only certain elements of BCM have been amenable to modification and serve as a template for the design of new inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.