Southern blot screening of a genomic Helicobacter pylori library was employed to find a P type ATPase using a mixture of 16 DNA oligonucleotides coding for the DKTGT(I/L)T consensus sequence specific for the phosphorylation site of this family of ATPases. A positive clone, pRH439, was isolated and sequenced. The inserted 3.4-kb H. pylori DNA contained an intact open reading frame encoding a protein of 686 amino acids carrying the consensus sites for phosphorylation and ATP binding. The amino acid sequence exhibits a 25-30% identity with bacterial Cd2+ and Cu2+ ATPases. Genomic Southern blot analysis showed that this ATPase was present in all H. pylori strains examined, whereas it was not detectable in Campylobacter jejuni and other bacteria. The membrane topology of this ATPase was investigated using in vitro transcription/translation of fusion vectors to find signal anchor and/or stop transfer sequences. Eight regions of the H. pylori ATPase acted as signal anchor and/or stop transfer sequences and were ordered pairwise along the polypeptide chain placing the N and C-terminal amino acids in the cytoplasm. These transmembrane segments are contained between positions 73 and 92 (H1), 98 and 125 (H2), 128 and 148 (H3), 149 and 176 (H4), 309 and 327 (H5), 337 and 371 (H6), 637 and 658 (H7), and 659 and 685 (H8). The membrane domain of the ATPase, therefore, consists of at least four pairs of transmembrane segments with the phosphorylation site and ATP binding domain located in the large cytoplasmic loop between H6 and H7. The cytoplasmic domain contains several histidines and cysteines, perhaps indicative of divalent cation binding sites. There are several charged amino acids (3 Lys, 2 Glu, 2 Asp), predicted to be in the membrane domain mainly in H2, H3, and H4 and a Cys-Pro-Cys putative metal ion site in H6. The extracytoplasmic domain also has several charged amino acids (5 Glu, 1 Asp, 1 Lys, 1 Arg). It is likely that this novel protein is a heavy metal cation transporting ATPase and belongs to a family of P type ATPases containing eight transmembrane segments.
ureI encodes an inner membrane protein of Helicobacter pylori. The role of the bacterial inner membrane and UreI in acid protection and regulation of cytoplasmic urease activity in the gastric microorganism was studied. The irreversible inhibition of urease when the organism was exposed to a protonophore (3,3′,4′,5‐tetrachlorsalicylanide; TCS) at acidic pH showed that the inner membrane protected urease from acid. Isogenic ureI knockout mutants of several H. pylori strains were constructed by replacing the ureI gene of the urease gene cluster with a promoterless kanamycin resistance marker gene (kanR). Mutants carrying the modified ureAB‐kanR‐EFGH operon all showed wild‐type levels of urease activity at neutral pH in vitro. The mutants resisted media of pH > 4.0 but not of pH < 4.0. Whereas wild‐type bacteria showed high levels of urease activity below pH 4.0, this ability was not retained in the ureI mutants, resulting in inhibition of metabolism and cell death. Gene complementation experiments with plasmid‐derived H. pylori ureI restored wild‐type properties. The activation of urease activity found in structurally intact but permeabilized bacteria treated with 0.01% detergent (polyoxy‐ethylene‐8‐laurylether; C12E8), suggested a membrane‐limited access of urea to internal urease at neutral pH. Measurement of 14C‐urea uptake into Xenopus oocytes injected with ureI cRNA showed acid activation of uptake only in injected oocytes. Acceleration of urea uptake by UreI therefore mediates the increase of intracellular urease activity seen under acidic conditions. This increase of urea permeability is essential for H. pylori survival in environments below pH 4.0. ureI‐independent urease activity may be sufficient for maintenance of bacterial viability above pH 4.0.
Cloning and sequencing of an approximately 6.0-kb chromosomal DNA fragment from Helicobacter felis revealed five complete open reading frames. The deduced amino acid sequence of one ORF exhibited sequence similarity to the FtsH protein, an ATP-dependent metalloprotease, from various bacterial species. The encoded protein consists of 638 amino acid residues with a molecular mass of 70.2 kDa. The hydropathy profile of the FtsH protein predicted two N-terminal transmembrane regions that were confirmed experimentally. Insertion of ftsH into a new versatile expression vector resulted in overexpression of FtsH protein in Escherichia coli. In addition, the E. coli ftsH gene could be replaced by the H. felis homologue to allow reduced growth and tenfold increased lysogenization by temperate phage lambda.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.