Premise Seed production is frequently limited by the receipt of insufficient or low‐quality pollen, collectively termed “pollen limitation” (PL). In taxa with gametophytic self‐incompatibility (GSI), incompatible pollen can germinate on stigmas but pollen tubes are arrested in styles. This allows for estimates of pollen performance before, during, and after self‐recognition, as well as insight into the factors underlying pollen quality limitation in GSI taxa. Methods We scored pollen performance following self and outcross pollinations in Argentina anserina to identify the location of self‐recognition and establish the relationship between pollen tubes and seed production. We then estimated quantity and quality components of PL from >3300 field‐collected styles. We combined our results with other studies to test the prediction that low pollen quality, but not quantity, drives higher PL in self‐incompatible (SI) taxa than in self‐compatible taxa (SC). Results Self and outcross pollen germinated readily on stigmas, but 96% of germinated self‐pollen was arrested during early tube elongation. Reproduction in the field was more limited by pollen quality than by quantity, and pollen failure near the location of self‐recognition was a stronger barrier to fertilization than pollen germination. Across 26 taxa, SI species experienced stronger pollen quality, but not quantity, limitation than SC species. Conclusions Evaluating pollen performance at multiple points within pistils can elucidate potential causes of pollen quality limitation. The receipt of incompatible pollen inhibits fertilization success more than insufficient pollen receipt or poor pollen germination in A. anserina. Likewise, pollen quality limitation drives high overall PL in other SI taxa.
Climate change has influenced species distributions worldwide with upward elevational shifts observed in many systems. Leading range edge populations, like those at upper elevation limits, are crucial for climate change responses but can exhibit low genetic diversity due to founder effects, isolation, or limited outbreeding. These factors can hamper local adaptation at range limits. Using the widespread herb, Argentina anserina, we measured ecological attributes (population density on the landscape, area of population occupancy, and plant and flower density) spanning a 1000 m elevation gradient, with high elevation populations at the range limit. We measured vegetative clonal potential in the greenhouse for populations spanning the gradient. We combined these data with a ddRAD-seq dataset to test the hypotheses that high elevation populations would exhibit ecological and genomic signatures of leading range edge populations. We found that population density on the landscape declined towards the high elevation limit, as is expected towards range edges. However, plant density was elevated within edge populations. In the greenhouse, high elevation plants exhibited stronger clonal potential than low elevation plants, likely explaining increased plant density in the field. Phylogeographic analysis supported more recent colonization of high elevation populations which were also more genetically isolated, had more extreme heterozygote excess and had smaller effective population size than low. Results support that colonization of high elevations was likely accompanied by increased asexuality, contributing to a decline in effective population size. Despite high plant density in leading edge populations, their small effective size, isolation and clonality could constrain adaptive potential.
Premise: To avoid inbreeding depression, plants have evolved diverse breeding systems to favor outcrossing, such as self-incompatibility. However, changes in biotic and abiotic conditions can result in selective pressures that lead to a breakdown in self-incompatibility. The shift to increased selfing is commonly associated with reduced floral features, lower attractiveness to pollinators, and increased inbreeding. We tested the hypothesis that the loss of self-incompatibility, a shift to selffertilization (autogamy), and concomitant evolution of the selfing syndrome (reduction in floral traits associated with cross-fertilization) will lead to increased inbreeding and population differentiation in Oenothera primiveris. Across its range, this species exhibits a shift in its breeding system and floral traits from a selfincompatible population with large flowers to self-compatible populations with smaller flowers. Methods: We conducted a breeding system assessment, evaluated floral traits in the field and under controlled conditions, and measured population genetic parameters using RADseq data. Results: Our results reveal a bimodal transition to the selfing syndrome from the west to the east of the range of O. primiveris. This shift includes variation in the breeding system and the mating system, a reduction in floral traits (flower diameter, herkogamy, and scent production), a shift to greater autogamy, reduced genetic diversity, and increased inbreeding. Conclusions: The observed variation highlights the importance of range-wide studies to understand breeding system variation and the evolution of the selfing syndrome within populations and species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.