Loss-of-function mutations in the FLG gene cause ichthyosis vulgaris (IV) and represent the major predisposing genetic risk factor for atopic dermatitis (AD). Although both conditions are characterized by epidermal barrier impairment, AD also exhibits signs of inflammation. This work was aimed at delineating the role of FLG loss-of-function mutations on eicosanoid metabolism in IV and AD. Using human epidermal equivalents (HEEs) generated with keratinocytes isolated from nonlesional skin of patients with FLG wild-type AD (WT/WT), FLG-mutated AD (FLG/WT), IV (FLG/FLG), or FLG WT control skin, we assessed the potential autocrine role of epidermal-derived eicosanoids in FLG-associated versus FLG-WT AD pathogenesis. Ultrastructural analyses demonstrated abnormal stratum corneum lipid architecture in AD and IV HEEs, independent of FLG genotype. Both AD (FLG/WT) and IV (FLG/FLG) HEEs showed impaired late epidermal differentiation. Only AD (FLG/WT) HEEs exhibited significantly increased levels of inflammatory cytokines. Analyses of lipid mediators revealed increased arachidonic acid and 12-lipoxygenase metabolites. Whereas treatment of control HEEs with arachidonic acid increased expression of inflammatory cytokines, 12-hydroxy-eicosatetraenoic acid attenuated expression of late differentiation markers. Thus, FLG mutations lead to alterations in epidermal eicosanoid metabolism that could serve as an autocrine trigger of inflammation and impaired late epidermal differentiation in AD.
Background: How T H 2-mediated allergic immune responses are induced is still under investigation. Objective: In an in vitro system we compared the effect of lipocalin allergens and nonallergenic homologues on human monocyte-derived dendritic cells (DCs) to investigate how they polarize naive CD4 1 T H cells. Microarray data gained with these DCs showed a significant difference in expression of formyl peptide receptors (FPRs). Activation of FPR3 in human monocyte-derived DCs leads to inhibition of IL-12 production. Low concentrations of IL-12 during T-cell priming biases immune responses toward T H 2. We hypothesize that binding of allergenic lipocalins to FPR3 might be a mechanism for induction of allergic immune responses. Methods: We examined whether lipocalins and FPR3 colocalize within the cells by using confocal microscopy. With calcium mobilization assays of FPR3-transfected HEK 293 cells, we measured FPR3 signaling in response to allergenic and nonallergenic lipocalins. Silencing of FPR3 in DCs and pretreatment with an antagonistic peptide were used to assess the function of FPR3 in T H 2 induction. Results: FPR3 and lipocalins colocalize in the same vesicles in DCs. Cathepsin S-digested allergenic lipocalins, but not digestion products of nonallergenic homologues, activate FPR3 signaling. FPR3 silencing in DCs or pretreatment with an antagonistic peptide restores IL-12 and induces IL-10 expression by DCs treated with lipocalin allergens, attenuating the T H 2 bias and inducing IL-10 production in cocultured T H cells. Conclusion: We describe a novel molecular mechanism for induction of T H 2-mediated allergic immune responses. (J
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.