Molecular docking programs are primarily designed to align rigid, drug-like fragments into the binding sites of macromolecules and frequently display poor performance when applied to flexible carbohydrate molecules. A critical source of flexibility within an oligosaccharide is the glycosidic linkages. Recently, Carbohydrate Intrinsic (CHI) energy functions were reported that attempt to quantify the glycosidic torsion angle preferences. In the present work, the CHI-energy functions have been incorporated into the AutoDock Vina (ADV) scoring function, subsequently termed Vina-Carb (VC). Two user-adjustable parameters have been introduced, namely, a CHI- energy weight term (chi_coeff) that affects the magnitude of the CHI-energy penalty and a CHI-cutoff term (chi_cutoff) that negates CHI-energy penalties below a specified value. A data set consisting of 101 protein–carbohydrate complexes and 29 apoprotein structures was used in the development and testing of VC, including antibodies, lectins, and carbohydrate binding modules. Accounting for the intramolecular energies of the glycosidic linkages in the oligosaccharides during docking led VC to produce acceptable structures within the top five ranked poses in 74% of the systems tested, compared to a success rate of 55% for ADV. An enzyme system was employed in order to illustrate the potential application of VC to proteins that may distort glycosidic linkages of carbohydrate ligands upon binding. VC represents a significant step toward accurately predicting the structures of protein–carbohydrate complexes. Furthermore, the described approach is conceptually applicable to any class of ligands that populate well-defined conformational states.
Docking algorithms that aim to be applicable to a broad range of ligands suffer reduced accuracy because they are unable to incorporate ligand-specific conformational energies. Here, we develop internal energy functions, Carbohydrate Intrinsic (CHI), to account for the rotational preferences of the glycosidic torsion angles in carbohydrates. The relative energies predicted by the CHI energy functions mirror the conformational distributions of glycosidic linkages determined from a survey of oligosaccharide-protein complexes in the Protein Data Bank. Addition of CHI energies to the standard docking scores in Autodock 3, 4.2, and Vina consistently improves pose ranking of oligosaccharides docked to a set of anti-carbohydrate antibodies. The CHI energy functions are also independent of docking algorithm, and with minor modifications, may be incorporated into both theoretical modeling methods, and experimental NMR or X-ray structure refinement programs.
G-protein-coupled receptors (GPCRs) mediate multiple signaling pathways in the cell, depending on the agonist that activates the receptor and multiple cellular factors. Agonists that show higher potency to specific signaling pathways over others are known as "biased agonists" and have been shown to have better therapeutic index. Although biased agonists are desirable, their design poses several challenges to date. The number of assays to identify biased agonists seems expensive and tedious. Therefore, computational methods that can reliably calculate the possible bias of various ligands ahead of experiments and provide guidance, will be both cost and time effective. In this work, using the mechanism of allosteric communication from the extracellular region to the intracellular transducer protein coupling region in GPCRs, we have developed a computational method to calculate ligand bias ahead of experiments. We have validated the method for several -arrestin-biased agonists in-adrenergic receptor (2AR), serotonin receptors 5-HT1B and 5-HT2B and for G-protein-biased agonists in the -opioid receptor. Using this computational method, we also performed a blind prediction followed by experimental testing and showed that the agonist carmoterol is-arrestin-biased in 2AR. Additionally, we have identified amino acid residues in the biased agonist binding site in both2AR and -opioid receptors that are involved in potentiating the ligand bias. We call these residues functional hotspots, and they can be used to derive pharmacophores to design biased agonists in GPCRs.
Summary Agonist binding in the extracellular region of the G protein-coupled adenosine A2A receptor increases its affinity to the G proteins in the intracellular region, and vice versa. The structural basis for this effect is not evident from the crystal structures of A 2A R in various conformational states since it stems from the receptor dynamics. Using atomistic molecular dynamics simulations on four different conformational states of the adenosine A 2A receptor, we observed that the agonists show decreased ligand mobility, lower entropy of the extracellular loops in the active-intermediate state compared with the inactive state. In contrast, the entropy of the intracellular region increases to prime the receptor for coupling the G protein. Coupling of the G protein to A 2A R shrinks the agonist binding site, making tighter receptor agonist contacts with an increase in the strength of allosteric communication compared with the active-intermediate state. These insights provide a strong basis for structure-based ligand design studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.