Under the field conditions crop plants interact with diverse microorganisms. These include beneficial (symbiotic) and phytopathogenic microorganisms, which jointly affect growth and productivity of the plants. In last decades, production of potato (Solanum tuberosum L.) suffers from increased incidence of potato virus Y (PVY), which is one of most important potato pests. Arbuscular mycorrhizal fungi (AMF) are common symbionts of potato, however the impact of mycorrhizal symbiosis on the progression of PVY-induced disease is scarcely known. Therefore, in the present study we investigated the effect of joint PVY infection and mycorrhizal colonization by Rhizophagus irregularis on growth traits of the host potato plant (cv. Pirol). The tested PVY isolate belonged to N-Wilga strain group, which is considered to be predominant in Europe and many other parts of the world. The viral particles were concentrated in the leaves, but decreased the root growth. Furthermore, the infection with PVY evoked prolonged oxidative stress reflected by increased level of endogenous H 2 O 2. AMF alleviated oxidative stress in PVY-infected host plants by a substantial decrease in the level of shoot-and rootderived H 2 O 2 , but still caused asymptomatic growth depression. It was assumed that mycorrhizal symbiosis of potato might mask infection by PVY in field observations.
Endothelial cells and immune cells are major regulators of cancer progression and prognosis. Endothelial cell proliferation and angiogenesis are required for providing nutrients and oxygen to the nascent tumor and infiltration of immune cells to the tumor is dependent on endothelial cell activation. Myeloid cells and innate lymphocytes have an important role in shaping the tumor microenvironment by crosstalking with cancer cells and structural cells, including endothelial cells. Innate immune cells can modulate the activation and functions of tumor endothelial cells, and, in turn, endothelial cell expression of adhesion molecules can affect immune cell extravasation. However, the mechanisms underlying this bidirectional crosstalk are not fully understood. In this review, we will provide an overview of the current knowledge on the pathways regulating the crosstalk between innate immune cells and endothelial cells during tumor progression and discuss their potential contribution to the development of novel anti-tumor therapeutic approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.