The biosynthesis of natural products by heterologous expression of biosynthetic pathways in amenable production strains enables biotechnological access to a variety of valuable compounds by conversion of renewable resources. Pseudomonas putida has emerged as a microbial laboratory work horse, with elaborated techniques for cultivation and genetic manipulation available. Beyond that, this bacterium offers several particular advantages with regard to natural product biosynthesis, notably a versatile intrinsic metabolism with diverse enzymatic capacities as well as an outstanding tolerance to xenobiotics. Therefore, it has been applied for recombinant biosynthesis of several valuable natural products. This review provides an overview of applications of P. putida as a host organism for the recombinant biosynthesis of such natural products, including rhamnolipids, terpenoids, polyketides and non-ribosomal peptides, and other amino acid-derived compounds. The focus is on de novo natural product synthesis from intrinsic building blocks by means of heterologous gene expression and strain engineering. Finally, the future potential of the bacterium as a chassis organism for synthetic microbiology is pointed out.
Serratia marcescens and several other bacteria produce the red-colored pigment prodigiosin which possesses bioactivities as an antimicrobial, anticancer, and immunosuppressive agent. Therefore, there is a great interest to produce this natural compound. Efforts aiming at its biotechnological production have so far largely focused on the original producer and opportunistic human pathogen S. marcescens. Here, we demonstrate efficient prodigiosin production in the heterologous host Pseudomonas putida. Random chromosomal integration of the 21 kb prodigiosin biosynthesis gene cluster of S. marcescens in P. putida KT2440 was employed to construct constitutive prodigiosin production strains. Standard cultivation parameters were optimized such that titers of 94 mg/L culture were obtained upon growth of P. putida at 20°C using rich medium under high aeration conditions. Subsequently, a novel, fast and effective protocol for prodigiosin extraction and purification was established enabling the straightforward isolation of prodigiosin from P. putida growth medium. In summary, we describe here a highly efficient method for the heterologous biosynthetic production of prodigiosin which may serve as a basis to produce large amounts of this bioactive natural compound and may provide a platform for further in-depth studies of prodiginine biosynthesis.
The deeply red-colored natural compound prodigiosin is a representative of the prodiginine alkaloid family, which possesses bioactivities as antimicrobial, antitumor, and antimalarial agents. Various bacteria including the opportunistic human pathogen Serratia marcescens and different members of the Streptomycetaceae and Pseudoalteromonadaceae produce prodiginines. In addition, these microbes generally accumulate many structurally related alkaloids making efficient prodiginine synthesis and purification difficult and expensive. Furthermore, it is known that structurally different natural prodiginine variants display differential bioactivities. In the herein described mutasynthesis approach, 13 different derivatives of prodigiosin were obtained utilizing the GRAS (generally recognized as safe) classified strain Pseudomonas putida KT2440. Genetic engineering of the prodigiosin pathway together with incorporation of synthetic intermediates thus resulted in the formation of a so far unprecedented structural diversity of new prodiginine derivatives in P. putida. Furthermore, the formed products allow reliable conclusions regarding the substrate specificity of PigC, the final condensing enzyme in the prodigiosin biosynthesis pathway of S. marcescens. The biological activity of prodigiosin toward modulation of autophagy was preserved in prodiginine derivatives. One prodiginine derivative displayed more potent autophagy inhibitory activity than the parent compound or the synthetic clinical candidate obatoclax.
Light can be used to control numerous cellular processes including protein function and interaction as well as gene expression in a non-invasive fashion and with unprecedented spatiotemporal resolution. However, for chemical phototriggers tight, gradual, and homogeneous light response has never been attained in living cells. Here, we report on a light-responsive bacterial T7 RNA polymerase expression system based on a photocaged derivative of the inducer molecule isopropyl-β-d-thiogalactopyranoside (IPTG). We have comparatively analyzed different Escherichia coli lac promoter-regulated expression systems in batch and microfluidic single-cell cultivation. The lacY-deficient E. coli strain Tuner(DE3) harboring additional plasmid-born copies of the lacI gene exhibited a sensitive and defined response to increasing IPTG concentrations. Photocaged IPTG served as a synthetic photo-switch to convert the E. coli system into an optogenetic expression module allowing for precise and gradual light-triggering of gene expression as demonstrated at the single cell level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.