Context. Studies of long-term solar activity and variability require knowledge of the past evolution of the solar surface magnetism. The archives of full-disc Ca II K observations that have been performed more or less regularly at various sites since 1892 can serve as an important source of such information. Aims. We derive the plage area evolution over the last 12 solar cycles by employing data from all Ca II K archives that are publicly available in digital form, including several as-yet-unexplored Ca II K archives. Methods. We analysed more than 290 000 full-disc Ca II K observations from 43 datasets spanning the period between 1892–2019. All images were consistently processed with an automatic procedure that performs the photometric calibration (if needed) and the limb-darkening compensation. The processing also accounts for artefacts affecting many of the images, including some very specific artefacts, such as bright arcs found in Kyoto and Yerkes data. Our employed methods have previously been tested and evaluated on synthetic data and found to be more accurate than other methods used in the literature to treat a subset of the data analysed here. Results. We produced a plage area time-series from each analysed dataset. We found that the differences between the plage areas derived from individual archives are mainly due to the differences in the central wavelength and the bandpass used to acquire the data at the various sites. We empirically cross-calibrated and combined the results obtained from each dataset to produce a composite series of plage areas. The ’backbone’ approach was used to bridge the series together. We have also shown that the selection of the backbone series has little effect on the final composite of the plage area. We quantified the uncertainty of determining the plage areas with our processing due to shifts in the central wavelength and found it to be less than 0.01 in fraction of the solar disc for the average conditions found on historical data. We also found the variable seeing conditions during the observations to slightly increase the plage areas during the activity maxima. Conclusions. We provide the most complete so far time series of plage areas based on corrected and calibrated historical and modern Ca II K images. Consistent plage areas are now available on 88% of all days from 1892 onwards and on 98% from 1907 onwards.
A sunspot catalogue was published by the Coimbra Astronomical Observatory (Portugal), now named Geophysical and Astronomical Observatory of the University of Coimbra, for the period 1929-1941. We digitalized data included in that catalogue and provide a machine-readable version. We show the reconstructions for the (total and hemispheric) sunspot number index and sunspot area according to this catalogue, comparing it with the sunspot number index (version 2) and Balmaceda sunspot area series (Balmaceda et al., J. Geophys. Res. 114, A07104, 2009). Moreover, we also compared the Coimbra catalogue with records made at the Royal Greenwich Observatory. The results demonstrate that the historical catalogue compiled by the Coimbra Astronomical Observatory contain reliable sunspot data and therefore can be considered for studies about solar activity.
This paper presents a sustainable strategy for improving the capture of antibodies by affinity chromatography. A novel biomimetic ligand (4-((4-chloro-6-(3-hydroxyphenoxy)-1,3,5-triazin-2-yl)oxy)naphthalen-1-ol) (TPN-BM) was synthesized using a greener and simple protocol to overcome solubility limitations associated with ligand 22/8, known as artificial protein A. Furthermore, its subsequent immobilization on chitosan-based monoliths induced by plasma surface activation allowed the design of a fast and efficient chromatographic platform for immunoglobulin G (IgG) purification. The TPN-BM functionalized monoliths exhibited high-binding capacity (160 ± 10 mg IgG per gram of support), and a selective capture of monoclonal antibodies directly from mammalian crude extracts in 85 ± 5% yield and 98% of purity. The synthesis of ligand TPN-BM and the routes followed for monoliths preparation and functionalization were inspired in the green chemistry principles allowing the reduction of processing time, solvents and purification steps involved, turning the integrated system attractive from an economical and chemical point of view.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.