A B S T R A C T PurposeRadiotherapy with concomitant and adjuvant temozolomide is the standard of care for newly diagnosed glioblastoma (GBM). O 6 -methylguanine-DNA methyltransferase (MGMT) methylation status may be an important determinant of treatment response. Dose-dense (DD) temozolomide results in prolonged depletion of MGMT in blood mononuclear cells and possibly in tumor. This trial tested whether DD temozolomide improves overall survival (OS) or progression-free survival (PFS) in patients with newly diagnosed GBM. Patients and MethodsThis phase III trial enrolled patients older than age 18 years with a Karnofsky performance score of Ն 60 with adequate tissue. Stratification included clinical factors and tumor MGMT methylation status. Patients were randomly assigned to standard temozolomide (arm 1) or DD temozolomide (arm 2) for 6 to 12 cycles. The primary end point was OS. Secondary analyses evaluated the impact of MGMT status. ResultsA total of 833 patients were randomly assigned to either arm 1 or arm 2 (1,173 registered). No statistically significant difference was observed between arms for median OS (16.6 v 14.9 months, respectively; hazard ratio [HR], 1.03; P ϭ .63) or median PFS (5.5 v 6.7 months; HR, 0.87; P ϭ .06). Efficacy did not differ by methylation status. MGMT methylation was associated with improved OS (21.2 v 14 months; HR, 1.74; P Ͻ .001), PFS (8.7 v 5.7 months; HR, 1.63; P Ͻ .001), and response (P ϭ .012). There was increased grade Ն 3 toxicity in arm 2 (34% v 53%; P Ͻ .001), mostly lymphopenia and fatigue. ConclusionThis study did not demonstrate improved efficacy for DD temozolomide for newly diagnosed GBM, regardless of methylation status. However, it did confirm the prognostic significance of MGMT methylation. Feasibility of large-scale accrual, prospective tumor collection, and molecular stratification was demonstrated.
Purpose: YKL-40 is a secreted protein that has been reported to be overexpressed in epithelial cancers and gliomas, although its function is unknown. Previous data in a smaller sample set suggested that YKL-40 was a marker associated with a poorer clinical outcome and a genetically defined subgroup of glioblastoma. Here we test these findings in a larger series of patients with glioblastoma, and in particular, determine if tumor YKL-40 expression is associated with radiation response. Experimental Design: Patients (n = 147) with subtotal resections were studied for imaging-assessed changes in tumor size in serial studies following radiation therapy. An additional set (n = 140) of glioblastoma patients who underwent a gross-total resection was tested to validate the survival association and extend them to patients with minimal residual disease. Results: In the subtotal resection group, higher YKL-40 expression was significantly associated with poorer radiation response, shorter time to progression and shorter overall survival. The association of higher YKL-40 expression with poorer survival was validated in the gross-total resection group. In multivariate analysis with both groups combined (n = 287), YKL-40 was an independent predictor of survival after adjusting for patient age, performance status, and extent of resection. YKL-40 expression was also compared with genetically defined subsets of glioblastoma by assessing epidermal growth factor receptor amplification and loss at chromosome 10q, two of the common recurring aberrations in these tumors, using fluorescent in situ hybridization. YKL-40 was significantly associated with 10q loss. Conclusions: The findings implicate YKL-40 as an important marker of therapeutic response and genetic subtype in glioblastomas and suggest that it may play an oncogenic role in these tumors.
PURPOSE Proton radiotherapy (PRT) may lessen the neuropsychological risk traditionally associated with cranial radiotherapy for the treatment of pediatric brain tumors by reducing the dose to normal tissue compared with that of photon radiotherapy (XRT). We examined the change in intellectual scores over time in patients with pediatric medulloblastoma treated with craniospinal PRT versus XRT. METHODS Intelligence test scores were obtained for a sample of pediatric patients treated between 2007 and 2018 on the same medulloblastoma protocols that differed only in radiotherapy modality (PRT v XRT). Growth curve analyses compared change in scores over time since diagnosis between groups. RESULTS Longitudinal intelligence data from 79 patients (37 PRT, 42 XRT) were examined. Groups were similar on most demographic/clinical variables, including sex (67.1% male), age at diagnosis (mean, 8.6 years), craniospinal irradiation dose (median, 23.4 Gy), length of follow-up (mean, 4.3 years), and parental education (mean, 14.3 years). Boost dose ( P < .001) and boost margin ( P = .001) differed between groups. Adjusting for covariates, the PRT group exhibited superior long-term outcomes in global intelligence quotient (IQ), perceptual reasoning, and working memory compared with the XRT group (all P < .05). The XRT group exhibited a significant decline in global IQ, working memory, and processing speed (all P < .05). The PRT group exhibited stable scores over time in all domains with the exception of processing speed ( P = .003). CONCLUSION To our knowledge, this is the first study to compare intellectual trajectories between pediatric patients treated for medulloblastoma with PRT versus those treated with XRT on comparable, contemporary protocols. PRT was associated with more favorable intellectual outcomes in most domains compared with XRT, although processing speed emerged as a vulnerable domain for both groups. This study provides the strongest evidence to date of an intellectual sparing advantage with PRT in the treatment of pediatric medulloblastoma.
Purpose Compared with photon radiation (XRT), proton beam radiation therapy (PBRT) reduces dose to normal tissues, which may lead to better neurocognitive outcomes. We compared change in intelligence quotient (IQ) over time in pediatric patients with brain tumors treated with PBRT versus XRT. Patients and Methods IQ scores were available for 150 patients (60 had received XRT, 90 had received PBRT). Linear mixed models examined change in IQ over time since radiation therapy (RT) by RT group, controlling for demographic/clinical characteristics. Craniospinal and focal RT subgroups were also examined. Results In the PBRT group, no change in IQ over time was identified (P = .130), whereas in the XRT group, IQ declined by 1.1 points per year (P = .004). IQ slopes did not differ between groups (P = .509). IQ was lower in the XRT group (by 8.7 points) versus the PBRT group (P = .011). In the craniospinal subgroup, IQ remained stable in both the PBRT (P = .203) and XRT groups (P = .060), and IQ slopes did not differ (P = .890). IQ was lower in the XRT group (by 12.5 points) versus the PBRT group (P = .004). In the focal subgroup, IQ scores remained stable in the PBRT group (P = .401) but declined significantly in the XRT group by 1.57 points per year (P = .026). IQ slopes did not differ between groups (P = .342). Conclusion PBRT was not associated with IQ decline or impairment, yet IQ slopes did not differ between the PBRT and XRT groups. It remains unclear if PBRT results in clinically meaningful cognitive sparing that significantly exceeds that of modern XRT protocols. Additional long-term data are needed to fully understand the neurocognitive impact of PBRT in survivors of pediatric brain tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.