This is an author produced version of a paper published in Nature. This paper has been peer-reviewed and is proof-corrected, but does not include the journal pagination. The most unique feature of Earth is the existence of life, and the most extraordinary feature of life is its diversity. Approximately 9 million types of plants, animals, protists and fungi inhabit the earth. So, too, do 7 billion people. Two decades ago, at the first Earth Summit, the vast majority of the world's nations declared that human actions were dismantling Earth's ecosystems, eliminating genes, species, and biological traits at an alarming rate. This observation led to a daunting question: How 30 will loss of biological diversity alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper?
The coexistence of competing species depends on the balance between their fitness differences, which determine their competitive inequalities, and their niche differences, which stabilise their competitive interactions. Darwin proposed that evolution causes species' niches to diverge, but the influence of evolution on relative fitness differences, and the importance of both niche and fitness differences in determining coexistence have not yet been studied together. We tested whether the phylogenetic distances between species of green freshwater algae determined their abilities to coexist in a microcosm experiment. We found that niche differences were more important in explaining coexistence than relative fitness differences, and that phylogenetic distance had no effect on either coexistence or on the sizes of niche and fitness differences. These results were corroborated by an analysis of the frequency of the co-occurrence of 325 pairwise combinations of algal taxa in > 1100 lakes across North America. Phylogenetic distance may not explain the coexistence of freshwater green algae.
At present, the disciplines of evolutionary biology and ecosystem science are weakly integrated. As a result, we have a poor understanding of how the ecological and evolutionary processes that create, maintain, and change biological diversity affect the flux of energy and materials in global biogeochemical cycles. The goal of this article was to review several research fields at the interfaces between ecosystem science, community ecology and evolutionary biology, and suggest new ways to integrate evolutionary biology and ecosystem science. In particular, we focus on how phenotypic evolution by natural selection can influence ecosystem functions by affecting processes at the environmental, population and community scale of ecosystem organization. We develop an eco-evolutionary model to illustrate linkages between evolutionary change (e.g. phenotypic evolution of producer), ecological interactions (e.g. consumer grazing) and ecosystem processes (e.g. nutrient cycling). We conclude by proposing experiments to test the ecosystem consequences of evolutionary changes.
Interspecific competition between phytophagous insects can occur when plant responses induced by an early‐season herbivore alter host quality for later colonizers. Recent evidence for specificity in the elicitation of induced plant responses by different attackers suggests that dynamics of host use in the field may be more complex than previously anticipated, because host suitability for colonizing herbivores may depend on which herbivore species has initially damaged a plant. In each of two years, we manipulated the first herbivore to attack Solanum dulcamara plants in an experimental population using several different arthropod species and subsequently monitored colonization by natural herbivores over the course of the growing season. We additionally performed weekly herbivore counts in wild S. dulcamara populations following natural variation in herbivore arrival. Plant‐mediated interactions occurred primarily between two leaf‐feeding beetles, Psylliodes affinis and Plagiometriona clavata. In both manipulative and observational experiments, P. clavata oviposition was reduced on plants initially damaged by P. affinis (or a third leaf‐feeding beetle, Lema trilinea) relative to plants that were initially undamaged. Lowered P. clavata occurrence continued through subsequent life‐history stages, resulting in decreased emergence of second‐generation P. clavata adults on these plants. The occurrence of P. affinis was also lowered on plants damaged by conspecifics in both manipulative and observational experiments. Resistance against P. affinis also followed applications of jasmonic acid, an elicitor of plant defensive responses. Conversely, early‐season damage by P. clavata did not influence plant quality for either later conspecifics or P. affinis. Initial herbivory by the spittlebug Aphrophora saratogensis or generalist taildropper slugs (Prophysaon sp.) likewise had no influence on P. clavata and P. affinis colonization, whereas L. trilinea damage did not affect later arriving P. affinis. Hence, only a subset of early‐season damagers influenced herbivore occurrence on S. dulcamara. Preference tests examining P. affinis feeding and P. clavata oviposition confirmed that specificity in elicitation of induced plant responses produced the divergent herbivore occurrence patterns observed in the field. Overall, the existence of plant‐mediated competitive asymmetry between herbivore species on S. dulcamara highlights the dynamic nature of plant resistance and its potential role in organizing herbivore communities.
The research of a generation of ecologists was catalysed by the recognition that the number and identity of species in communities influences the functioning of ecosystems. The relationship between biodiversity and ecosystem functioning (BEF) is most often examined by controlling species richness and randomising community composition. In natural systems, biodiversity changes are often part of a bigger community assembly dynamic. Therefore, focusing on community assembly and the functioning of ecosystems (CAFE), by integrating both species richness and composition through species gains, losses and changes in abundance, will better reveal how community changes affect ecosystem function. We synthesise the BEF and CAFE perspectives using an ecological application of the Price equation, which partitions the contributions of richness and composition to function. Using empirical examples, we show how the CAFE approach reveals important contributions of composition to function. These examples show how changes in species richness and composition driven by environmental perturbations can work in concert or antagonistically to influence ecosystem function. Considering how communities change in an integrative fashion, rather than focusing on one axis of community structure at a time, will improve our ability to anticipate and predict changes in ecosystem function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.