Abstrak— Dalam berbelanja kebutuhan sehari-hari seringkali pembeli mengalami kesulitan dalam mencari barang-barang kebutuhan sehari-hari. Salah satu faktor penyebab hal ini karena prosedur penataan produk dalam minimarket yang masih dilakukan secara acak dan belum sesuai dengan pola belanja pembeli. Di sisi lain pada umumnya pembeli ingin membeli produk melalui paket produk kebutuhan sehari-hari, namun paket-paket produk tersebut umumnya belum tersedia di minimarket. Untuk mengatasi permasalahan penataan produk dan pembuatan paket produk di minimarket dapat digunakan prosedur yang lebih efektif dengan cara menemukan pola hubungan dari data transaksi pada Minimarket. Dalam menemukan pola hubungan pada penelitian ini akan digunakan metode association rule untuk melihat keterkaitan antara barang yang satu dengan lainnya dalam data transaksi. Pada penelitian ini menggunakan algoritma FP-Growth dan K-Means. Algoritma K-Means berguna untuk cluster data, sedangkan algoritma FP-Growth berguna untuk proses asosiasi. Dalam proses K-Means dataset dibagi ke dalam 10 kelompok karena jumlah kelompok yang lebih besar atau lebih kecil dari 10 kelompok menghasilkan rule yang lebih sedikit dibandingkan dengan 10 kelompok. Serta pada proses FP-Growth berdasarkan ukuran yang digunakan untuk memilih aturan yang ada yaitu menggunakan minimum support, minimum confidence dan lift ratio maka minimum support yang digunakan sebesar 20% dan minimum confidence sebesar 50%. Karena memiliki nilai minimum support, minimum confidence dan lift ratio yang cukup besar. Hasil dari penelitian ini menghasilkan rekomendasi penataan pada 10 rak di minimarket dan menghasilkan rekomendasi paket berupa 21 paket/bundle.Kata Kunci— Association Rule, FP-Growth, K-Means, Penataan Produk, Paket Produk.
Pandemi corona telah mengubah proses pembelajaran dari yang semula tatap muka secara langsung (offline) menjadi pembelajaran secara daring (online). Pembelajaran daring ini menyebabkan kesulitan dalam pemantauan perilaku siswa oleh guru karena berkurangnya interaksi secara langsung. Lebih dari itu, siswa seringkali merasa terisolasi sehingga jika dibiarkan, situasi ini akan menyebabkan kegagalan dalam prestasi belajarnya. Permasalahan ini mendorong banyak dilakukannya penelitian tentang pemodelan yang berkaitan dengan perilaku siswa. Namun, para peneliti sebelumnya tidak banyak yang fokus pada peningkatan kinerja model atau sistem yang dibangun, padahal kinerja model ini sangat berpengaruh terhadap kualitas hasil pemetaan perilaku siswa. Untuk itu, makalah ini berfokus pada peningkatan kinerja pengklasteran perilaku siswa ketika berinteraksi dengan sistem e-Learning. Peningkatan kinerja dilakukan dengan reduksi dimensi pada data siswa dengan Principal Component Analysis (PCA). Selanjutnya, dua teknik inisialisasi titik pusat klaster dieksplorasi untuk mendapatkan hasil yang optimal, yaitu: random dan K-means++. Untuk pengukuran kualitas klaster, makalah ini menggunakan silhouette index. Hasil pengujian menunjukkan bahwa klaster dengan kualitas tertinggi dicapai oleh penerapan PCA dengan tujuh komponen dan banyaknya klaster tiga sampai empat untuk semua teknik inisialisasi titik pusat. Klaster yang berkualitas ini dapat membantu guru dalam memonitor perilaku siswa pada pembelajaran secara daring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.