Background: Hypoxia-inducible factor (HIF) transcriptional system plays a central role in cellular adaptation to low oxygen levels. Preconditional activation of HIF and/or expression of its individual target gene products leading to cytoprotection have been well established in hypoxic/ischemic renal injury. Increasing evidence indicate HIF activation is involved in hypoxic/ischemic postconditioning of heart, brain and kidney. Very few studies evaluated the potential benefits of postischemia HIF activation in renal injury employing a pharmacological agent. We hypothesized that postischemia augmentation of HIF activation with a pharmacological agent would protect renal ischemia/reperfusion injury. For this, TRC160334, a novel HIF hydroxylase inhibitor, was used. Methods: TRC160334, a novel HIF hydroxylase inhibitor, was synthesized. Ability of TRC160334 for stabilization of HIF-α and consequent HIF activation was evaluated in Hep3B cells. Efficacy of TRC160334 was evaluated in a rat model of ischemia/reperfusion-induced AKI. Two different treatment protocols were employed, one involved treatment with TRC160334 before onset of ischemia, the other involved treatment after the reperfusion of kidneys. Results: TRC160334 treatment results in stabilization of HIF-α leading to HIF activation in Hep3B cells. Significant reduction in renal injury was observed by both treatment protocols and remarkable reduction in serum creatinine (23 and 71% at 24 and 48 h, respectively, p < 0.01) was observed with TRC160334 treatment applied after reperfusion. Urine output was significantly improved up to 24 h by both treatment protocols. Conclusion: The data presented here provide pharmacologic evidence for postischemia augmentation of HIF activation by TRC160334 as a promising and clinically feasible strategy for the treatment of renal ischemia/reperfusion injury.
BackgroundPatients with diabesity have a significantly increased risk of developing cardiovascular disease. Therefore, therapy addressing the multiple metabolic abnormalities linked with diabesity and leading to further reduction of cardiovascular risk is highly desirable. Activation of the TGR5 receptor holds therapeutic potential for diabesity. In the present study, we evaluated the efficacy of TRC210258, a novel TGR5 agonist, in clinically relevant animal models of diabesity.MethodsA novel small molecule, TRC210258 (N-(4-chlorophenyl)-2-(4-fluorophenoxy)-N-methylimidazo (1, 2-a) pyrimidine-3-carboxamide), was synthesized. The in vitro TGR5 receptor activation potential of TRC210258 was assessed by cyclic adenosine monophosphate (cAMP) assay and cAMP-responsive element reporter assay using cells overexpressing the human TGR5 receptor. The effect of TRC210258 on glucagon-like peptide-1 release was evaluated in vitro using a human enteroendocrine cell line. The effect of TRC210258 on energy expenditure and glycemic control was evaluated in high-fat diet-induced obese mice. Additionally, the effect of TRC210258 on dyslipidemic parameters was determined in high fat-fed hamsters.ResultsTRC210258 demonstrated potent TGR5 agonist activity, with enhanced glucagon-like peptide-1 release and energy expenditure. Treatment with TRC210258 resulted in better glycemic control and improved parameters of dyslipidemia such as plasma triglyceride, low-density lipoprotein cholesterol, and non-high-density lipoprotein cholesterol levels. Treatment with TRC210258 also improved emerging dyslipidemic cardiovascular risk parameters, including remnant cholesterol and triglyceride clearance.ConclusionThis study highlights the potential of TRC210258, a novel TGR5 agonist, to improve dyslipidemic cardiovascular risk beyond glycemic control in patients with type 2 diabetes.
Background and aimMucosal healing in inflammatory bowel disease (IBD) can be achieved by improvement of intestinal barrier protection. Activation of hypoxia-inducible factor (HIF) has been identified as a critical factor for barrier protection during mucosal insult and is linked with improvement in symptoms of colitis. Although prophylactic efficacy of HIF hydroxylase inhibitors in murine colitis have been established, its therapeutic efficacy in clinically relevant therapeutic settings have not been established. In the present study we aim to establish therapeutic efficacy of TRC160334, a novel HIF hydroxylase inhibitor, in animal models of colitis.MethodsThe efficacy of TRC160334 was evaluated in two different mouse models of colitis by oral route. A prophylactic efficacy study was performed in a 2,4,6-trinitrobenzene sulfonic acid-induced mouse model of colitis representing human Crohn’s disease pathology. Additionally, a therapeutic efficacy study was performed in a dextran sulfate sodium-induced mouse model of colitis, a model simulating human ulcerative colitis.ResultsTRC160334 treatment resulted in significant improvement in disease end points in both models of colitis. TRC160334 treatment resulted into cytoprotective heatshock protein 70 induction in inflamed colon. TRC160334 successfully attenuated the rate of fall in body weight, disease activity index, and macroscopic and microscopic scores of colonic damage leading to overall improvement in study outcome.ConclusionOur findings are the first to demonstrate that therapeutic intervention with a HIF hydroxylase inhibitor ameliorates IBD in disease models. These findings highlight the potential of TRC160334 for its clinical application in the treatment of IBD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.