The GPGP/TAEMS domain-independent coordination framework for small agent groups was first described in 1992 and then more fully detailed in an ICMAS'95 paper. In this paper, we discuss the evolution of this framework which has been motivated by its use in a number of applications, including: information gathering and management, intelligent home automation, distributed situation assessment, coordination of concurrent engineering activities, hospital scheduling, travel planning, repair service coordination and supply chain management. First, we review the basic architecture of GPGP and then present extensions to the TAEMS domain-independent representation of agent activities. We next describe extensions to GPGP that permit the representation of situation-specific coordination strategies and social laws as well as making possible the use of GPGP in large agent organizations. Additionally, we discuss a more encompassing view of commitments that takes into account uncertainty in commitments. We then present new coordination mechanisms for use in resource sharing and contracting, and more complex coordination mechanisms that use a cooperative search among agents to find appropriate commitments. We conclude with a summary of the major ideas underpinning GPGP, an analysis of the applicability of the GPGP framework including performance issues, and a discussion of future research directions.
The World Wide Web has become an invaluable information resource but the explosion of available information has made web search a time consuming and complex process. The large number of information sources and their different levels of accessibility, reliability and associated costs present a complex information gathering control problem. This paper describes the rationale, architecture, and implementation of a next generation information gathering system-a system that integrates several areas of Artificial Intelligence research under a single umbrella. Our solution to the information explosion is an information gathering agent, BIG, that plans to gather information to support a decision process, reasons about the resource trade-offs of different possible gathering approaches, extracts information from both unstructured and structured documents, and uses the extracted information to refine its search and processing activities.
Sophisticated agents operating in open environments must make decisions that efficiently trade off the use of their limited resources between dynamic deliberative actions and domain actions. This is the meta-level control problem for agents operating in resource-bounded multi-agent environments. Control activities involve decisions on when to invoke and the amount to effort to put into scheduling and coordination of domain activities. The focus of this paper is how to make effective meta-level control decisions. We show that meta-level control with bounded computational overhead allows complex agents to solve problems more efficiently than current approaches in dynamic open multi-agent environments. The meta-level control approach that we present is based on the decision-theoretic use of an abstract representation of the agent state. This abstraction concisely captures critical information necessary for decision making while bounding the cost of meta-level control and is appropriate for use in automatically learning the meta-level control policies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.