We studied the effects of an anti-gravity treadmill (AlterG) training on walking capacity and corticospinal tract structure in children with Cerebral Palsy (CP). AlterG can help CP children walk on the treadmill by reducing their weights up to 80% and maintain their balance during locomotion. AlterG training thus has the potential to improve walking capacity permanently as it can provide systematic and intense locomotor training for sufficiently long period of time and produce brain neuroplasticity. AlterG training was given for 45 minutes, three times a week for two months. The neuroplasticity of corticospinal tract was evaluated using Diffusion Tensor Imaging (DTI). The fractional Anisotropy (FA) feature was extracted to quantify structural changes of the corticospinal tract. Walking capacity was evaluated using popular clinical measurements of gait; i.e., walking speed, mobility and balance. The evaluations were done before and after training. Our results revealed that AlterG training resulted in an increase in average FA value of the corticospinal tract following the training. The outcome measures of clinical assessments of gait presented enhanced walking capacity of the CP subjects. Our findings indicated that the improved walking capacity was concurrent with the enhancement of the corticospinal tract structure. The clinical implication is that AlterG training may be considered as a therapeutic tool for permanent gait improvement in CP children.
We evaluated the therapeutic effects of anti-gravity locomotor treadmill (AlterG) training on postural stability in children with Cerebral Palsy (CP) and spasticity, particularly in the lower extremity. AlterG can facilitate walking by reducing the weight of CP children by up to 80%; it can also help subjects maintain an appropriate posture during the locomotor AlterG training. Thus, we hypothesized that AlterG training, for a sufficient period of time, has a potential to produce cerebellum neuroplasticity, and consequently result in an effective permanent postural stability. AlterG training was given for 45 minutes, three times a week for two months. Postural balance was evaluated using posturography. The parameters of the Romberg based posturography were extracted to quantify the Center of Balance (CoP). The neuroplasticity of Cerebellum was evaluated using a Diffusion Tensor Imaging (DTI). The evaluations were done pre- and post-training. The Fractional Anisotropy (FA) feature was used for quantifying structural changes in the cerebellum. The results showed that AlterG training resulted in an increase in average FA value of the cerebellum white matter following the training. The results of the posturography evaluations showed a consistent improvement in postural stability. These results were consistent in all subjects. Our findings indicated that the improvement in the posture was accompanied with the enhancement of the cerebellum white matter structure. The clinical implication is that AlterG training can be considered a therapeutic tool for an effective and permanent improvement of postural stability in CP children.
We aimed to study the effects of an anti-gravity treadmill (AlterG) training on balance and postural stability in children with cerebral palsy (CP). AlterG training was performed 3 days/week for 8 weeks, with up to 45 minutes of training per session. The subject was evaluated before and after the 8-week training. The effects of training on the balance and postural stability was evaluated based on the Romberg test that was performed by using a posturography device. The parameters quantifying Center-of-Pressure (CoP) were calculated using different analytical approaches including power spectral density and principal components analyses. All of the key parameters including the Stabilogram, the Fast Fourier Transform (FFT) Energy, the Eigenvectors, and the Eigenvalues of CoP were modified between 14%-84%. The results indicated that the balance features were improved substantially after training. The clinical implication is that the AlterG has the potential to effectively improve postural stability in children with cerebral palsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.