To have therapeutic promise of neural stem/precursor cells (NS/PCs) an appropriate scaffold is mostly essential. This study was conducted to fabricate collagen (Col)/chitosan-functionalized graphene oxide (CSGO) nanocomposite hydrogel and evaluated it as scaffold for NS/PCs. Graphene oxide was first functionalized with chitosan and the obtained CSGO was then added to Col solution and the solution underwent hydrogel formation. GO sheets were exfoliated after CS functionalization and the CSGO was homogenously dispersed in Col hydrogel. CSGO addition resulted in hydrogels with higher porosity and smaller Col fibers. Furthermore, CSGO increased the gelation time and water absorption capacity while the degradation was decreased. Cell studies demonstrated higher viability of NS/PCs on Col/CSGO hydrogel comparing with Col and poly-l-lysine as control (Cnt). NS/PCs were also penetrated into the Col/CSGO hydrogel and showed more cell spreading, neurite outgrowth and inter-cell connections in comparison with Col hydrogel. In addition, the cells traveled longer distance on Col/CSGO hydrogels than on Col and Cnt, indicating excellent migration capacity of NS/PCs on Col/CSGO hydrogel. Our results indicate the potential Col/CSGO hydrogels as an appropriate scaffold for NS/PCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.