Light-responsive supramolecular polymers were applied as reversible adhesives that permit bonding and debonding on demand features. A telechelic poly(ethylene-co-butylene) (PEB) was functionalized with either self-complementary hydrogen-bonding ureidopyrimidinone (UPy) motifs (UPy-PEB-UPy) or 2,6-bis(1'-methylbenzimidazolyl)-pyridine (Mebip) ligands (Mebip-PEB-Mebip), which can coordinate to metal ions (Zn(NTf2)2) and form a metallosupramolecular polymer with the sum formula [Znx(Mebip-PEB-Mebip)](NTf2)2x, with x ≈ 1. In the latter case, light-heat conversion is facilitated by the ultraviolet (UV) light-absorbing metal-ligand motifs, while in the case of UPy-PEB-UPy a UV absorber was added for this purpose. Single lap joints were prepared by sandwiching films of the supramolecular polymers of a thickness of 80-100 μm between two glass, quartz, or stainless steel substrates and bonded by exposure to either UV light (320-390 nm, 900 mW/cm(2)) or heat (80 or 200 °C for UPy-PEB-UPy and the metallopolymer, respectively). UPy-PEB-UPy and [Zn0.8Mebip-PEB-Mebip](NTf2)1.6 displayed a shear strength of 0.9-1.2 and 1.8-2.5 MPa, respectively. When lap joints were placed under load and exposed to light or heat, the samples debonded within seconds. They could be rebonded through exposure to light or heat, and the original adhesive properties were recovered.
We report the preparation and characterization of light-healable nanocomposites based on cellulose nanocrystals (CNCs) and a metallosupramolecular polymer (MSP) assembled from a telechelic poly(ethylene-co-butylene) that was end-functionalized with 2,6-bis(1′-methylbenzimidazolyl) pyridine (Mebip) ligands and Zn(NTf2)2. The polymer absorbs incident ultraviolet (UV) radiation and converts it into heat, which causes dissociation of the metal–ligand motifs. This process liquefies the material, and small defects are readily filled. When the UV light is switched off, the MSP reassembles and the original properties are restored. The introduction of CNCs into the MSP matrix leads to a significant increase of the stiffness and strength, from 52 and 1.7 MPa for the neat polymer to 135 and 5.6 MPa upon introduction of 10% w/w CNCs. The Zn2+ ions bind to the CNCs which means the metal:ligand ratio of the MSP must be adjusted accordingly. In nanocomposites thus made, deliberately introduced defects can be efficiently healed.
Soft earthworm‐like robots that exhibit mechanical compliance can, in principle, navigate through uneven terrains and constricted spaces that are inaccessible to traditional legged and wheeled robots. However, unlike the biological originals that they mimic, most of the worm‐like robots reported to date contain rigid components that limit their compliance, such as electromotors or pressure‐driven actuation systems. Here, a mechanically compliant worm‐like robot with a fully modular body that is based on soft polymers is reported. The robot is composed of strategically assembled, electrothermally activated polymer bilayer actuators, which are based on a semicrystalline polyurethane with an exceptionally large nonlinear thermal expansion coefficient. The segments are designed on the basis of a modified Timoshenko model, and finite element analysis simulation is used to describe their performance. Upon electrical activation of the segments with basic waveform patterns, the robot can move through repeatable peristaltic locomotion on exceptionally slippery or sticky surfaces and it can be oriented in any direction. The soft body enables the robot to wriggle through openings and tunnels that are much smaller than its cross‐section.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.